Metamath Proof Explorer


Theorem dssmapfv3d

Description: Value of the duality operator for self-mappings of subsets of a base set, B when applied to function F and subset S . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
dssmapfvd.d
|- D = ( O ` B )
dssmapfvd.b
|- ( ph -> B e. V )
dssmapfv2d.f
|- ( ph -> F e. ( ~P B ^m ~P B ) )
dssmapfv2d.g
|- G = ( D ` F )
dssmapfv3d.s
|- ( ph -> S e. ~P B )
dssmapfv3d.t
|- T = ( G ` S )
Assertion dssmapfv3d
|- ( ph -> T = ( B \ ( F ` ( B \ S ) ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o
 |-  O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
2 dssmapfvd.d
 |-  D = ( O ` B )
3 dssmapfvd.b
 |-  ( ph -> B e. V )
4 dssmapfv2d.f
 |-  ( ph -> F e. ( ~P B ^m ~P B ) )
5 dssmapfv2d.g
 |-  G = ( D ` F )
6 dssmapfv3d.s
 |-  ( ph -> S e. ~P B )
7 dssmapfv3d.t
 |-  T = ( G ` S )
8 1 2 3 4 5 dssmapfv2d
 |-  ( ph -> G = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) )
9 difeq2
 |-  ( s = S -> ( B \ s ) = ( B \ S ) )
10 9 fveq2d
 |-  ( s = S -> ( F ` ( B \ s ) ) = ( F ` ( B \ S ) ) )
11 10 difeq2d
 |-  ( s = S -> ( B \ ( F ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ S ) ) ) )
12 11 adantl
 |-  ( ( ph /\ s = S ) -> ( B \ ( F ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ S ) ) ) )
13 difexg
 |-  ( B e. V -> ( B \ ( F ` ( B \ S ) ) ) e. _V )
14 3 13 syl
 |-  ( ph -> ( B \ ( F ` ( B \ S ) ) ) e. _V )
15 8 12 6 14 fvmptd
 |-  ( ph -> ( G ` S ) = ( B \ ( F ` ( B \ S ) ) ) )
16 7 15 syl5eq
 |-  ( ph -> T = ( B \ ( F ` ( B \ S ) ) ) )