| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dssmapfvd.o |  |-  O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) | 
						
							| 2 |  | dssmapfvd.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | dssmapfvd.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | dssmapfv2d.f |  |-  ( ph -> F e. ( ~P B ^m ~P B ) ) | 
						
							| 5 |  | dssmapfv2d.g |  |-  G = ( D ` F ) | 
						
							| 6 |  | dssmapfv3d.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 7 |  | dssmapfv3d.t |  |-  T = ( G ` S ) | 
						
							| 8 | 1 2 3 4 5 | dssmapfv2d |  |-  ( ph -> G = ( s e. ~P B |-> ( B \ ( F ` ( B \ s ) ) ) ) ) | 
						
							| 9 |  | difeq2 |  |-  ( s = S -> ( B \ s ) = ( B \ S ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( s = S -> ( F ` ( B \ s ) ) = ( F ` ( B \ S ) ) ) | 
						
							| 11 | 10 | difeq2d |  |-  ( s = S -> ( B \ ( F ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ S ) ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ s = S ) -> ( B \ ( F ` ( B \ s ) ) ) = ( B \ ( F ` ( B \ S ) ) ) ) | 
						
							| 13 | 3 | difexd |  |-  ( ph -> ( B \ ( F ` ( B \ S ) ) ) e. _V ) | 
						
							| 14 | 8 12 6 13 | fvmptd |  |-  ( ph -> ( G ` S ) = ( B \ ( F ` ( B \ S ) ) ) ) | 
						
							| 15 | 7 14 | eqtrid |  |-  ( ph -> T = ( B \ ( F ` ( B \ S ) ) ) ) |