Metamath Proof Explorer


Theorem dssmapfv3d

Description: Value of the duality operator for self-mappings of subsets of a base set, B when applied to function F and subset S . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
dssmapfvd.b ( 𝜑𝐵𝑉 )
dssmapfv2d.f ( 𝜑𝐹 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
dssmapfv2d.g 𝐺 = ( 𝐷𝐹 )
dssmapfv3d.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
dssmapfv3d.t 𝑇 = ( 𝐺𝑆 )
Assertion dssmapfv3d ( 𝜑𝑇 = ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
2 dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
3 dssmapfvd.b ( 𝜑𝐵𝑉 )
4 dssmapfv2d.f ( 𝜑𝐹 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
5 dssmapfv2d.g 𝐺 = ( 𝐷𝐹 )
6 dssmapfv3d.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
7 dssmapfv3d.t 𝑇 = ( 𝐺𝑆 )
8 1 2 3 4 5 dssmapfv2d ( 𝜑𝐺 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑠 ) ) ) ) )
9 difeq2 ( 𝑠 = 𝑆 → ( 𝐵𝑠 ) = ( 𝐵𝑆 ) )
10 9 fveq2d ( 𝑠 = 𝑆 → ( 𝐹 ‘ ( 𝐵𝑠 ) ) = ( 𝐹 ‘ ( 𝐵𝑆 ) ) )
11 10 difeq2d ( 𝑠 = 𝑆 → ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑠 ) ) ) = ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) )
12 11 adantl ( ( 𝜑𝑠 = 𝑆 ) → ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑠 ) ) ) = ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) )
13 difexg ( 𝐵𝑉 → ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) ∈ V )
14 3 13 syl ( 𝜑 → ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) ∈ V )
15 8 12 6 14 fvmptd ( 𝜑 → ( 𝐺𝑆 ) = ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) )
16 7 15 syl5eq ( 𝜑𝑇 = ( 𝐵 ∖ ( 𝐹 ‘ ( 𝐵𝑆 ) ) ) )