| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dssmapfvd.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
| 2 |
|
dssmapfvd.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
dssmapfvd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 5 |
|
difeq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ 𝑡 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 7 |
6
|
difeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 9 |
4 8
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 10 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 11 |
10
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 12 |
|
pwidg |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵 ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐵 ) |
| 14 |
11 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 15 |
|
fvex |
⊢ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ V |
| 16 |
15
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 17 |
14 16
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 19 |
9 18
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 20 |
3
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝒫 𝐵 ∈ V ) |
| 22 |
21 21
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
| 23 |
19 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 26 |
|
difeq2 |
⊢ ( 𝑠 = 𝑢 → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ 𝑢 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑠 = 𝑢 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) |
| 28 |
27
|
difeq2d |
⊢ ( 𝑠 = 𝑢 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
| 29 |
28
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
| 30 |
25 29
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑔 = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) ) |
| 31 |
|
difeq2 |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ 𝑢 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 33 |
32
|
difeq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑢 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 35 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝑡 ) |
| 36 |
35
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ 𝑡 ) |
| 37 |
36 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ 𝑡 ) ) |
| 38 |
|
vex |
⊢ 𝑡 ∈ V |
| 39 |
38
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ 𝑡 ) ↔ ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 40 |
37 39
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 42 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
| 44 |
30 34 41 43
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 45 |
44
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 46 |
45
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 47 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵 ) |
| 48 |
|
dfss4 |
⊢ ( 𝑡 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 49 |
47 48
|
sylib |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
| 51 |
50
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) |
| 52 |
51
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 54 |
20 20
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 57 |
56
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) ⊆ 𝐵 ) |
| 58 |
|
dfss4 |
⊢ ( ( 𝑓 ‘ 𝑡 ) ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
| 59 |
57 58
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
| 60 |
59
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
| 61 |
46 53 60
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 63 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝑓 Fn 𝒫 𝐵 ) |
| 64 |
63
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑓 Fn 𝒫 𝐵 ) |
| 65 |
|
difeq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ 𝑧 ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) |
| 67 |
66
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) |
| 68 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
| 69 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
| 70 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ∈ V ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ∈ V ) |
| 72 |
64 67 69 71
|
fnmptfvd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ( 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 73 |
62 72
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
| 74 |
24 73
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
| 75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
| 76 |
|
difeq2 |
⊢ ( 𝑧 = 𝑡 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑡 ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝑧 = 𝑡 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 78 |
77
|
difeq2d |
⊢ ( 𝑧 = 𝑡 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 79 |
78
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 80 |
75 79
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 81 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 82 |
81
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 83 |
82 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 84 |
|
fvex |
⊢ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ V |
| 85 |
84
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 86 |
83 85
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 87 |
86
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 88 |
80 87
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 89 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝒫 𝐵 ∈ V ) |
| 90 |
89 89
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
| 91 |
88 90
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 92 |
91
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 93 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
| 94 |
|
difeq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑢 ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) |
| 96 |
95
|
difeq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
| 97 |
96
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
| 98 |
93 97
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑓 = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) ) |
| 99 |
31
|
fveq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 100 |
99
|
difeq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 101 |
100
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑢 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 102 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 103 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
| 104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
| 105 |
98 101 102 104
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 106 |
105
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 107 |
106
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 108 |
49
|
fveq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
| 109 |
108
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) |
| 110 |
109
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 111 |
110
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 112 |
20 20
|
elmapd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
| 113 |
112
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 114 |
113
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 115 |
114
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) ⊆ 𝐵 ) |
| 116 |
|
dfss4 |
⊢ ( ( 𝑔 ‘ 𝑡 ) ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
| 117 |
115 116
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
| 118 |
117
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
| 119 |
107 111 118
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 120 |
119
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 121 |
|
elmapfn |
⊢ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝑔 Fn 𝒫 𝐵 ) |
| 122 |
121
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑔 Fn 𝒫 𝐵 ) |
| 123 |
|
difeq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ 𝑠 ) ) |
| 124 |
123
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 125 |
124
|
difeq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 126 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
| 128 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∈ V ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∈ V ) |
| 130 |
122 125 127 129
|
fnmptfvd |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ( 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 131 |
120 130
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 132 |
92 131
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
| 133 |
74 132
|
impbida |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ) |
| 134 |
133
|
mptcnv |
⊢ ( 𝜑 → ◡ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) = ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
| 135 |
1 2 3
|
dssmapfvd |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
| 136 |
135
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐷 = ◡ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
| 137 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) = ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) |
| 138 |
137
|
difeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) = ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) |
| 139 |
138
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) |
| 140 |
|
difeq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝑏 ∖ 𝑠 ) = ( 𝑏 ∖ 𝑧 ) ) |
| 141 |
140
|
fveq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) = ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) |
| 142 |
141
|
difeq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) = ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) |
| 143 |
142
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) |
| 144 |
139 143
|
eqtrdi |
⊢ ( 𝑓 = 𝑔 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) |
| 145 |
144
|
cbvmptv |
⊢ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) = ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) |
| 146 |
145
|
mpteq2i |
⊢ ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) = ( 𝑏 ∈ V ↦ ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) ) |
| 147 |
1 146
|
eqtri |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) ) |
| 148 |
147 2 3
|
dssmapfvd |
⊢ ( 𝜑 → 𝐷 = ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
| 149 |
134 136 148
|
3eqtr4d |
⊢ ( 𝜑 → ◡ 𝐷 = 𝐷 ) |