Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
dssmapfvd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
5 |
|
difeq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ 𝑡 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
7 |
6
|
difeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
9 |
4 8
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
10 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
11 |
10
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
12 |
|
pwidg |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵 ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐵 ) |
14 |
11 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
15 |
|
fvex |
⊢ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ V |
16 |
15
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
17 |
14 16
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
19 |
9 18
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
20 |
3
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝒫 𝐵 ∈ V ) |
22 |
21 21
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
23 |
19 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
26 |
|
difeq2 |
⊢ ( 𝑠 = 𝑢 → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ 𝑢 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝑠 = 𝑢 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) |
28 |
27
|
difeq2d |
⊢ ( 𝑠 = 𝑢 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
29 |
28
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
30 |
25 29
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑔 = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) ) |
31 |
|
difeq2 |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ 𝑢 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
33 |
32
|
difeq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑢 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
35 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝑡 ) |
36 |
35
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ 𝑡 ) |
37 |
36 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ 𝑡 ) ) |
38 |
|
vex |
⊢ 𝑡 ∈ V |
39 |
38
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ 𝑡 ) ↔ ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
40 |
37 39
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
42 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
44 |
30 34 41 43
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
45 |
44
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
46 |
45
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
47 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵 ) |
48 |
|
dfss4 |
⊢ ( 𝑡 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
49 |
47 48
|
sylib |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
50 |
49
|
fveq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
51 |
50
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) |
52 |
51
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) ) |
54 |
20 20
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
55 |
54
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
56 |
55
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝒫 𝐵 ) |
57 |
56
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) ⊆ 𝐵 ) |
58 |
|
dfss4 |
⊢ ( ( 𝑓 ‘ 𝑡 ) ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
59 |
57 58
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
60 |
59
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑓 ‘ 𝑡 ) ) ) = ( 𝑓 ‘ 𝑡 ) ) |
61 |
46 53 60
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
63 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝑓 Fn 𝒫 𝐵 ) |
64 |
63
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑓 Fn 𝒫 𝐵 ) |
65 |
|
difeq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ 𝑧 ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) |
67 |
66
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) |
68 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
70 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ∈ V ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ∈ V ) |
72 |
64 67 69 71
|
fnmptfvd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ( 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑓 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
73 |
62 72
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
74 |
24 73
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
76 |
|
difeq2 |
⊢ ( 𝑧 = 𝑡 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑡 ) ) |
77 |
76
|
fveq2d |
⊢ ( 𝑧 = 𝑡 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
78 |
77
|
difeq2d |
⊢ ( 𝑧 = 𝑡 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
79 |
78
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
80 |
75 79
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 = ( 𝑡 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
81 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
82 |
81
|
sspwi |
⊢ 𝒫 𝐵 ⊆ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
83 |
82 13
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
84 |
|
fvex |
⊢ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ V |
85 |
84
|
elpwun |
⊢ ( 𝐵 ∈ 𝒫 ( 𝐵 ∪ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
86 |
83 85
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
87 |
86
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
88 |
80 87
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
89 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝒫 𝐵 ∈ V ) |
90 |
89 89
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑓 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
91 |
88 90
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
92 |
91
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
93 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) |
94 |
|
difeq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑢 ) ) |
95 |
94
|
fveq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) |
96 |
95
|
difeq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
97 |
96
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) |
98 |
93 97
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑓 = ( 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) ) ) |
99 |
31
|
fveq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) = ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
100 |
99
|
difeq2d |
⊢ ( 𝑢 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
101 |
100
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑢 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑢 ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
102 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
103 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ∈ V ) |
105 |
98 101 102 104
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
106 |
105
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
107 |
106
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
108 |
49
|
fveq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
109 |
108
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) |
110 |
109
|
difeq2d |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) ) |
111 |
110
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) ) |
112 |
20 20
|
elmapd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) ) |
113 |
112
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝑔 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
114 |
113
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) ∈ 𝒫 𝐵 ) |
115 |
114
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) ⊆ 𝐵 ) |
116 |
|
dfss4 |
⊢ ( ( 𝑔 ‘ 𝑡 ) ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
117 |
115 116
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
118 |
117
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑔 ‘ 𝑡 ) ) |
119 |
107 111 118
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
120 |
119
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
121 |
|
elmapfn |
⊢ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝑔 Fn 𝒫 𝐵 ) |
122 |
121
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑔 Fn 𝒫 𝐵 ) |
123 |
|
difeq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ 𝑠 ) ) |
124 |
123
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
125 |
124
|
difeq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
126 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ∈ V ) |
128 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∈ V ) |
129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∈ V ) |
130 |
122 125 127 129
|
fnmptfvd |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ( 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑔 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
131 |
120 130
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
132 |
92 131
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
133 |
74 132
|
impbida |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑔 = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝑓 = ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) ) |
134 |
133
|
mptcnv |
⊢ ( 𝜑 → ◡ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) = ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
135 |
1 2 3
|
dssmapfvd |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
136 |
135
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐷 = ◡ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
137 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) = ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) |
138 |
137
|
difeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) = ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) |
139 |
138
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) |
140 |
|
difeq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝑏 ∖ 𝑠 ) = ( 𝑏 ∖ 𝑧 ) ) |
141 |
140
|
fveq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) = ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) |
142 |
141
|
difeq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) = ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) |
143 |
142
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) |
144 |
139 143
|
eqtrdi |
⊢ ( 𝑓 = 𝑔 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) |
145 |
144
|
cbvmptv |
⊢ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) = ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) |
146 |
145
|
mpteq2i |
⊢ ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) = ( 𝑏 ∈ V ↦ ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) ) |
147 |
1 146
|
eqtri |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑔 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑔 ‘ ( 𝑏 ∖ 𝑧 ) ) ) ) ) ) |
148 |
147 2 3
|
dssmapfvd |
⊢ ( 𝜑 → 𝐷 = ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑧 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑔 ‘ ( 𝐵 ∖ 𝑧 ) ) ) ) ) ) |
149 |
134 136 148
|
3eqtr4d |
⊢ ( 𝜑 → ◡ 𝐷 = 𝐷 ) |