Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
dssmapfvd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
1 2 3
|
dssmapfvd |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
5 |
3
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
6 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ∈ V ) |
7 |
6
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ∈ V ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑓 ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) |
9 |
8
|
fnmptf |
⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ∈ V → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
11 |
|
fneq1 |
⊢ ( 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↔ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
12 |
11
|
biimprd |
⊢ ( 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) → ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
13 |
4 10 12
|
sylc |
⊢ ( 𝜑 → 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
14 |
1 2 3
|
dssmapnvod |
⊢ ( 𝜑 → ◡ 𝐷 = 𝐷 ) |
15 |
|
nvof1o |
⊢ ( ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ ◡ 𝐷 = 𝐷 ) → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |