Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
dssmapfvd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
1 2 3
|
dssmapnvod |
⊢ ( 𝜑 → ◡ 𝐷 = 𝐷 ) |
5 |
4
|
coeq1d |
⊢ ( 𝜑 → ( ◡ 𝐷 ∘ 𝐷 ) = ( 𝐷 ∘ 𝐷 ) ) |
6 |
1 2 3
|
dssmapf1od |
⊢ ( 𝜑 → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
7 |
|
f1ococnv1 |
⊢ ( 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → ( ◡ 𝐷 ∘ 𝐷 ) = ( I ↾ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐷 ∘ 𝐷 ) = ( I ↾ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
9 |
5 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐷 ) = ( I ↾ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |