Metamath Proof Explorer


Theorem dssmap2d

Description: For any base set B the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
dssmapfvd.b ( 𝜑𝐵𝑉 )
Assertion dssmap2d ( 𝜑 → ( 𝐷𝐷 ) = ( I ↾ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
2 dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
3 dssmapfvd.b ( 𝜑𝐵𝑉 )
4 1 2 3 dssmapnvod ( 𝜑 𝐷 = 𝐷 )
5 4 coeq1d ( 𝜑 → ( 𝐷𝐷 ) = ( 𝐷𝐷 ) )
6 1 2 3 dssmapf1od ( 𝜑𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) )
7 f1ococnv1 ( 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) → ( 𝐷𝐷 ) = ( I ↾ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )
8 6 7 syl ( 𝜑 → ( 𝐷𝐷 ) = ( I ↾ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )
9 5 8 eqtr3d ( 𝜑 → ( 𝐷𝐷 ) = ( I ↾ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )