Metamath Proof Explorer


Theorem dssmap2d

Description: For any base set B the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
dssmapfvd.d
|- D = ( O ` B )
dssmapfvd.b
|- ( ph -> B e. V )
Assertion dssmap2d
|- ( ph -> ( D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o
 |-  O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
2 dssmapfvd.d
 |-  D = ( O ` B )
3 dssmapfvd.b
 |-  ( ph -> B e. V )
4 1 2 3 dssmapnvod
 |-  ( ph -> `' D = D )
5 4 coeq1d
 |-  ( ph -> ( `' D o. D ) = ( D o. D ) )
6 1 2 3 dssmapf1od
 |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) )
7 f1ococnv1
 |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> ( `' D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) )
8 6 7 syl
 |-  ( ph -> ( `' D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) )
9 5 8 eqtr3d
 |-  ( ph -> ( D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) )