| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dssmapfvd.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
| 2 |
|
dssmapfvd.d |
|- D = ( O ` B ) |
| 3 |
|
dssmapfvd.b |
|- ( ph -> B e. V ) |
| 4 |
1 2 3
|
dssmapnvod |
|- ( ph -> `' D = D ) |
| 5 |
4
|
coeq1d |
|- ( ph -> ( `' D o. D ) = ( D o. D ) ) |
| 6 |
1 2 3
|
dssmapf1od |
|- ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
| 7 |
|
f1ococnv1 |
|- ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> ( `' D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( `' D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) ) |
| 9 |
5 8
|
eqtr3d |
|- ( ph -> ( D o. D ) = ( _I |` ( ~P B ^m ~P B ) ) ) |