Metamath Proof Explorer


Theorem dssmap2d

Description: For any base set B the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
Assertion dssmap2d φ D D = I 𝒫 B 𝒫 B

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 1 2 3 dssmapnvod φ D -1 = D
5 4 coeq1d φ D -1 D = D D
6 1 2 3 dssmapf1od φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
7 f1ococnv1 D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B D -1 D = I 𝒫 B 𝒫 B
8 6 7 syl φ D -1 D = I 𝒫 B 𝒫 B
9 5 8 eqtr3d φ D D = I 𝒫 B 𝒫 B