Metamath Proof Explorer


Theorem dssmapnvod

Description: For any base set B the duality operator for self-mappings of subsets of that base set is its own inverse, an involution. (Contributed by RP, 20-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
Assertion dssmapnvod φ D -1 = D

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 simpr φ g = s 𝒫 B B f B s g = s 𝒫 B B f B s
5 difeq2 s = t B s = B t
6 5 fveq2d s = t f B s = f B t
7 6 difeq2d s = t B f B s = B f B t
8 7 cbvmptv s 𝒫 B B f B s = t 𝒫 B B f B t
9 4 8 eqtrdi φ g = s 𝒫 B B f B s g = t 𝒫 B B f B t
10 ssun1 B B f B t
11 10 sspwi 𝒫 B 𝒫 B f B t
12 pwidg B V B 𝒫 B
13 3 12 syl φ B 𝒫 B
14 11 13 sselid φ B 𝒫 B f B t
15 fvex f B t V
16 15 elpwun B 𝒫 B f B t B f B t 𝒫 B
17 14 16 sylib φ B f B t 𝒫 B
18 17 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B f B t 𝒫 B
19 9 18 fmpt3d φ g = s 𝒫 B B f B s g : 𝒫 B 𝒫 B
20 3 pwexd φ 𝒫 B V
21 20 adantr φ g = s 𝒫 B B f B s 𝒫 B V
22 21 21 elmapd φ g = s 𝒫 B B f B s g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
23 19 22 mpbird φ g = s 𝒫 B B f B s g 𝒫 B 𝒫 B
24 23 adantrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B
25 simplr φ g = s 𝒫 B B f B s t 𝒫 B g = s 𝒫 B B f B s
26 difeq2 s = u B s = B u
27 26 fveq2d s = u f B s = f B u
28 27 difeq2d s = u B f B s = B f B u
29 28 cbvmptv s 𝒫 B B f B s = u 𝒫 B B f B u
30 25 29 eqtrdi φ g = s 𝒫 B B f B s t 𝒫 B g = u 𝒫 B B f B u
31 difeq2 u = B t B u = B B t
32 31 fveq2d u = B t f B u = f B B t
33 32 difeq2d u = B t B f B u = B f B B t
34 33 adantl φ g = s 𝒫 B B f B s t 𝒫 B u = B t B f B u = B f B B t
35 ssun1 B B t
36 35 sspwi 𝒫 B 𝒫 B t
37 36 13 sselid φ B 𝒫 B t
38 vex t V
39 38 elpwun B 𝒫 B t B t 𝒫 B
40 37 39 sylib φ B t 𝒫 B
41 40 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B t 𝒫 B
42 3 difexd φ B f B B t V
43 42 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B f B B t V
44 30 34 41 43 fvmptd φ g = s 𝒫 B B f B s t 𝒫 B g B t = B f B B t
45 44 difeq2d φ g = s 𝒫 B B f B s t 𝒫 B B g B t = B B f B B t
46 45 adantlrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B g B t = B B f B B t
47 elpwi t 𝒫 B t B
48 dfss4 t B B B t = t
49 47 48 sylib t 𝒫 B B B t = t
50 49 fveq2d t 𝒫 B f B B t = f t
51 50 difeq2d t 𝒫 B B f B B t = B f t
52 51 difeq2d t 𝒫 B B B f B B t = B B f t
53 52 adantl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B B f B B t = B B f t
54 20 20 elmapd φ f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
55 54 biimpa φ f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
56 55 ffvelrnda φ f 𝒫 B 𝒫 B t 𝒫 B f t 𝒫 B
57 56 elpwid φ f 𝒫 B 𝒫 B t 𝒫 B f t B
58 dfss4 f t B B B f t = f t
59 57 58 sylib φ f 𝒫 B 𝒫 B t 𝒫 B B B f t = f t
60 59 adantlrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B B f t = f t
61 46 53 60 3eqtrrd φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B f t = B g B t
62 61 ralrimiva φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B f t = B g B t
63 elmapfn f 𝒫 B 𝒫 B f Fn 𝒫 B
64 63 ad2antrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f Fn 𝒫 B
65 difeq2 t = z B t = B z
66 65 fveq2d t = z g B t = g B z
67 66 difeq2d t = z B g B t = B g B z
68 3 difexd φ B g B t V
69 68 ad2antrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B g B t V
70 3 difexd φ B g B z V
71 70 ad2antrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s z 𝒫 B B g B z V
72 64 67 69 71 fnmptfvd φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f = z 𝒫 B B g B z t 𝒫 B f t = B g B t
73 62 72 mpbird φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f = z 𝒫 B B g B z
74 24 73 jca φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B f = z 𝒫 B B g B z
75 simpr φ f = z 𝒫 B B g B z f = z 𝒫 B B g B z
76 difeq2 z = t B z = B t
77 76 fveq2d z = t g B z = g B t
78 77 difeq2d z = t B g B z = B g B t
79 78 cbvmptv z 𝒫 B B g B z = t 𝒫 B B g B t
80 75 79 eqtrdi φ f = z 𝒫 B B g B z f = t 𝒫 B B g B t
81 ssun1 B B g B t
82 81 sspwi 𝒫 B 𝒫 B g B t
83 82 13 sselid φ B 𝒫 B g B t
84 fvex g B t V
85 84 elpwun B 𝒫 B g B t B g B t 𝒫 B
86 83 85 sylib φ B g B t 𝒫 B
87 86 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B g B t 𝒫 B
88 80 87 fmpt3d φ f = z 𝒫 B B g B z f : 𝒫 B 𝒫 B
89 20 adantr φ f = z 𝒫 B B g B z 𝒫 B V
90 89 89 elmapd φ f = z 𝒫 B B g B z f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
91 88 90 mpbird φ f = z 𝒫 B B g B z f 𝒫 B 𝒫 B
92 91 adantrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z f 𝒫 B 𝒫 B
93 simplr φ f = z 𝒫 B B g B z t 𝒫 B f = z 𝒫 B B g B z
94 difeq2 z = u B z = B u
95 94 fveq2d z = u g B z = g B u
96 95 difeq2d z = u B g B z = B g B u
97 96 cbvmptv z 𝒫 B B g B z = u 𝒫 B B g B u
98 93 97 eqtrdi φ f = z 𝒫 B B g B z t 𝒫 B f = u 𝒫 B B g B u
99 31 fveq2d u = B t g B u = g B B t
100 99 difeq2d u = B t B g B u = B g B B t
101 100 adantl φ f = z 𝒫 B B g B z t 𝒫 B u = B t B g B u = B g B B t
102 40 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B t 𝒫 B
103 3 difexd φ B g B B t V
104 103 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B g B B t V
105 98 101 102 104 fvmptd φ f = z 𝒫 B B g B z t 𝒫 B f B t = B g B B t
106 105 difeq2d φ f = z 𝒫 B B g B z t 𝒫 B B f B t = B B g B B t
107 106 adantlrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B f B t = B B g B B t
108 49 fveq2d t 𝒫 B g B B t = g t
109 108 difeq2d t 𝒫 B B g B B t = B g t
110 109 difeq2d t 𝒫 B B B g B B t = B B g t
111 110 adantl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B B g B B t = B B g t
112 20 20 elmapd φ g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
113 112 biimpa φ g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
114 113 ffvelrnda φ g 𝒫 B 𝒫 B t 𝒫 B g t 𝒫 B
115 114 elpwid φ g 𝒫 B 𝒫 B t 𝒫 B g t B
116 dfss4 g t B B B g t = g t
117 115 116 sylib φ g 𝒫 B 𝒫 B t 𝒫 B B B g t = g t
118 117 adantlrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B B g t = g t
119 107 111 118 3eqtrrd φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B g t = B f B t
120 119 ralrimiva φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B g t = B f B t
121 elmapfn g 𝒫 B 𝒫 B g Fn 𝒫 B
122 121 ad2antrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g Fn 𝒫 B
123 difeq2 t = s B t = B s
124 123 fveq2d t = s f B t = f B s
125 124 difeq2d t = s B f B t = B f B s
126 3 difexd φ B f B t V
127 126 ad2antrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B f B t V
128 3 difexd φ B f B s V
129 128 ad2antrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z s 𝒫 B B f B s V
130 122 125 127 129 fnmptfvd φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g = s 𝒫 B B f B s t 𝒫 B g t = B f B t
131 120 130 mpbird φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g = s 𝒫 B B f B s
132 92 131 jca φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z f 𝒫 B 𝒫 B g = s 𝒫 B B f B s
133 74 132 impbida φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B f = z 𝒫 B B g B z
134 133 mptcnv φ f 𝒫 B 𝒫 B s 𝒫 B B f B s -1 = g 𝒫 B 𝒫 B z 𝒫 B B g B z
135 1 2 3 dssmapfvd φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s
136 135 cnveqd φ D -1 = f 𝒫 B 𝒫 B s 𝒫 B B f B s -1
137 fveq1 f = g f b s = g b s
138 137 difeq2d f = g b f b s = b g b s
139 138 mpteq2dv f = g s 𝒫 b b f b s = s 𝒫 b b g b s
140 difeq2 s = z b s = b z
141 140 fveq2d s = z g b s = g b z
142 141 difeq2d s = z b g b s = b g b z
143 142 cbvmptv s 𝒫 b b g b s = z 𝒫 b b g b z
144 139 143 eqtrdi f = g s 𝒫 b b f b s = z 𝒫 b b g b z
145 144 cbvmptv f 𝒫 b 𝒫 b s 𝒫 b b f b s = g 𝒫 b 𝒫 b z 𝒫 b b g b z
146 145 mpteq2i b V f 𝒫 b 𝒫 b s 𝒫 b b f b s = b V g 𝒫 b 𝒫 b z 𝒫 b b g b z
147 1 146 eqtri O = b V g 𝒫 b 𝒫 b z 𝒫 b b g b z
148 147 2 3 dssmapfvd φ D = g 𝒫 B 𝒫 B z 𝒫 B B g B z
149 134 136 148 3eqtr4d φ D -1 = D