Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
|- D = ( O ` B ) |
3 |
|
dssmapfvd.b |
|- ( ph -> B e. V ) |
4 |
|
simpr |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
5 |
|
difeq2 |
|- ( s = t -> ( B \ s ) = ( B \ t ) ) |
6 |
5
|
fveq2d |
|- ( s = t -> ( f ` ( B \ s ) ) = ( f ` ( B \ t ) ) ) |
7 |
6
|
difeq2d |
|- ( s = t -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( f ` ( B \ t ) ) ) ) |
8 |
7
|
cbvmptv |
|- ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( t e. ~P B |-> ( B \ ( f ` ( B \ t ) ) ) ) |
9 |
4 8
|
eqtrdi |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g = ( t e. ~P B |-> ( B \ ( f ` ( B \ t ) ) ) ) ) |
10 |
|
ssun1 |
|- B C_ ( B u. ( f ` ( B \ t ) ) ) |
11 |
10
|
sspwi |
|- ~P B C_ ~P ( B u. ( f ` ( B \ t ) ) ) |
12 |
|
pwidg |
|- ( B e. V -> B e. ~P B ) |
13 |
3 12
|
syl |
|- ( ph -> B e. ~P B ) |
14 |
11 13
|
sselid |
|- ( ph -> B e. ~P ( B u. ( f ` ( B \ t ) ) ) ) |
15 |
|
fvex |
|- ( f ` ( B \ t ) ) e. _V |
16 |
15
|
elpwun |
|- ( B e. ~P ( B u. ( f ` ( B \ t ) ) ) <-> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
17 |
14 16
|
sylib |
|- ( ph -> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
18 |
17
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
19 |
9 18
|
fmpt3d |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g : ~P B --> ~P B ) |
20 |
3
|
pwexd |
|- ( ph -> ~P B e. _V ) |
21 |
20
|
adantr |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> ~P B e. _V ) |
22 |
21 21
|
elmapd |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> ( g e. ( ~P B ^m ~P B ) <-> g : ~P B --> ~P B ) ) |
23 |
19 22
|
mpbird |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g e. ( ~P B ^m ~P B ) ) |
24 |
23
|
adantrl |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> g e. ( ~P B ^m ~P B ) ) |
25 |
|
simplr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
26 |
|
difeq2 |
|- ( s = u -> ( B \ s ) = ( B \ u ) ) |
27 |
26
|
fveq2d |
|- ( s = u -> ( f ` ( B \ s ) ) = ( f ` ( B \ u ) ) ) |
28 |
27
|
difeq2d |
|- ( s = u -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( f ` ( B \ u ) ) ) ) |
29 |
28
|
cbvmptv |
|- ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( u e. ~P B |-> ( B \ ( f ` ( B \ u ) ) ) ) |
30 |
25 29
|
eqtrdi |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> g = ( u e. ~P B |-> ( B \ ( f ` ( B \ u ) ) ) ) ) |
31 |
|
difeq2 |
|- ( u = ( B \ t ) -> ( B \ u ) = ( B \ ( B \ t ) ) ) |
32 |
31
|
fveq2d |
|- ( u = ( B \ t ) -> ( f ` ( B \ u ) ) = ( f ` ( B \ ( B \ t ) ) ) ) |
33 |
32
|
difeq2d |
|- ( u = ( B \ t ) -> ( B \ ( f ` ( B \ u ) ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
34 |
33
|
adantl |
|- ( ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) /\ u = ( B \ t ) ) -> ( B \ ( f ` ( B \ u ) ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
35 |
|
ssun1 |
|- B C_ ( B u. t ) |
36 |
35
|
sspwi |
|- ~P B C_ ~P ( B u. t ) |
37 |
36 13
|
sselid |
|- ( ph -> B e. ~P ( B u. t ) ) |
38 |
|
vex |
|- t e. _V |
39 |
38
|
elpwun |
|- ( B e. ~P ( B u. t ) <-> ( B \ t ) e. ~P B ) |
40 |
37 39
|
sylib |
|- ( ph -> ( B \ t ) e. ~P B ) |
41 |
40
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
42 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) e. _V ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) e. _V ) |
44 |
30 34 41 43
|
fvmptd |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( g ` ( B \ t ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
45 |
44
|
difeq2d |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) ) |
46 |
45
|
adantlrl |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) ) |
47 |
|
elpwi |
|- ( t e. ~P B -> t C_ B ) |
48 |
|
dfss4 |
|- ( t C_ B <-> ( B \ ( B \ t ) ) = t ) |
49 |
47 48
|
sylib |
|- ( t e. ~P B -> ( B \ ( B \ t ) ) = t ) |
50 |
49
|
fveq2d |
|- ( t e. ~P B -> ( f ` ( B \ ( B \ t ) ) ) = ( f ` t ) ) |
51 |
50
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) = ( B \ ( f ` t ) ) ) |
52 |
51
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( f ` t ) ) ) ) |
53 |
52
|
adantl |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( f ` t ) ) ) ) |
54 |
20 20
|
elmapd |
|- ( ph -> ( f e. ( ~P B ^m ~P B ) <-> f : ~P B --> ~P B ) ) |
55 |
54
|
biimpa |
|- ( ( ph /\ f e. ( ~P B ^m ~P B ) ) -> f : ~P B --> ~P B ) |
56 |
55
|
ffvelrnda |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( f ` t ) e. ~P B ) |
57 |
56
|
elpwid |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( f ` t ) C_ B ) |
58 |
|
dfss4 |
|- ( ( f ` t ) C_ B <-> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
59 |
57 58
|
sylib |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
60 |
59
|
adantlrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
61 |
46 53 60
|
3eqtrrd |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) |
62 |
61
|
ralrimiva |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> A. t e. ~P B ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) |
63 |
|
elmapfn |
|- ( f e. ( ~P B ^m ~P B ) -> f Fn ~P B ) |
64 |
63
|
ad2antrl |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> f Fn ~P B ) |
65 |
|
difeq2 |
|- ( t = z -> ( B \ t ) = ( B \ z ) ) |
66 |
65
|
fveq2d |
|- ( t = z -> ( g ` ( B \ t ) ) = ( g ` ( B \ z ) ) ) |
67 |
66
|
difeq2d |
|- ( t = z -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( g ` ( B \ z ) ) ) ) |
68 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ t ) ) ) e. _V ) |
69 |
68
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) e. _V ) |
70 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ z ) ) ) e. _V ) |
71 |
70
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ z e. ~P B ) -> ( B \ ( g ` ( B \ z ) ) ) e. _V ) |
72 |
64 67 69 71
|
fnmptfvd |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> ( f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) <-> A. t e. ~P B ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) ) |
73 |
62 72
|
mpbird |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
74 |
24 73
|
jca |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
75 |
|
simpr |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
76 |
|
difeq2 |
|- ( z = t -> ( B \ z ) = ( B \ t ) ) |
77 |
76
|
fveq2d |
|- ( z = t -> ( g ` ( B \ z ) ) = ( g ` ( B \ t ) ) ) |
78 |
77
|
difeq2d |
|- ( z = t -> ( B \ ( g ` ( B \ z ) ) ) = ( B \ ( g ` ( B \ t ) ) ) ) |
79 |
78
|
cbvmptv |
|- ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) = ( t e. ~P B |-> ( B \ ( g ` ( B \ t ) ) ) ) |
80 |
75 79
|
eqtrdi |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f = ( t e. ~P B |-> ( B \ ( g ` ( B \ t ) ) ) ) ) |
81 |
|
ssun1 |
|- B C_ ( B u. ( g ` ( B \ t ) ) ) |
82 |
81
|
sspwi |
|- ~P B C_ ~P ( B u. ( g ` ( B \ t ) ) ) |
83 |
82 13
|
sselid |
|- ( ph -> B e. ~P ( B u. ( g ` ( B \ t ) ) ) ) |
84 |
|
fvex |
|- ( g ` ( B \ t ) ) e. _V |
85 |
84
|
elpwun |
|- ( B e. ~P ( B u. ( g ` ( B \ t ) ) ) <-> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
86 |
83 85
|
sylib |
|- ( ph -> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
87 |
86
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
88 |
80 87
|
fmpt3d |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f : ~P B --> ~P B ) |
89 |
20
|
adantr |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> ~P B e. _V ) |
90 |
89 89
|
elmapd |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> ( f e. ( ~P B ^m ~P B ) <-> f : ~P B --> ~P B ) ) |
91 |
88 90
|
mpbird |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f e. ( ~P B ^m ~P B ) ) |
92 |
91
|
adantrl |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> f e. ( ~P B ^m ~P B ) ) |
93 |
|
simplr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
94 |
|
difeq2 |
|- ( z = u -> ( B \ z ) = ( B \ u ) ) |
95 |
94
|
fveq2d |
|- ( z = u -> ( g ` ( B \ z ) ) = ( g ` ( B \ u ) ) ) |
96 |
95
|
difeq2d |
|- ( z = u -> ( B \ ( g ` ( B \ z ) ) ) = ( B \ ( g ` ( B \ u ) ) ) ) |
97 |
96
|
cbvmptv |
|- ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) = ( u e. ~P B |-> ( B \ ( g ` ( B \ u ) ) ) ) |
98 |
93 97
|
eqtrdi |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> f = ( u e. ~P B |-> ( B \ ( g ` ( B \ u ) ) ) ) ) |
99 |
31
|
fveq2d |
|- ( u = ( B \ t ) -> ( g ` ( B \ u ) ) = ( g ` ( B \ ( B \ t ) ) ) ) |
100 |
99
|
difeq2d |
|- ( u = ( B \ t ) -> ( B \ ( g ` ( B \ u ) ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
101 |
100
|
adantl |
|- ( ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) /\ u = ( B \ t ) ) -> ( B \ ( g ` ( B \ u ) ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
102 |
40
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
103 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) e. _V ) |
104 |
103
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) e. _V ) |
105 |
98 101 102 104
|
fvmptd |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( f ` ( B \ t ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
106 |
105
|
difeq2d |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) ) |
107 |
106
|
adantlrl |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) ) |
108 |
49
|
fveq2d |
|- ( t e. ~P B -> ( g ` ( B \ ( B \ t ) ) ) = ( g ` t ) ) |
109 |
108
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) = ( B \ ( g ` t ) ) ) |
110 |
109
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( g ` t ) ) ) ) |
111 |
110
|
adantl |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( g ` t ) ) ) ) |
112 |
20 20
|
elmapd |
|- ( ph -> ( g e. ( ~P B ^m ~P B ) <-> g : ~P B --> ~P B ) ) |
113 |
112
|
biimpa |
|- ( ( ph /\ g e. ( ~P B ^m ~P B ) ) -> g : ~P B --> ~P B ) |
114 |
113
|
ffvelrnda |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( g ` t ) e. ~P B ) |
115 |
114
|
elpwid |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( g ` t ) C_ B ) |
116 |
|
dfss4 |
|- ( ( g ` t ) C_ B <-> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
117 |
115 116
|
sylib |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
118 |
117
|
adantlrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
119 |
107 111 118
|
3eqtrrd |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) |
120 |
119
|
ralrimiva |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> A. t e. ~P B ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) |
121 |
|
elmapfn |
|- ( g e. ( ~P B ^m ~P B ) -> g Fn ~P B ) |
122 |
121
|
ad2antrl |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> g Fn ~P B ) |
123 |
|
difeq2 |
|- ( t = s -> ( B \ t ) = ( B \ s ) ) |
124 |
123
|
fveq2d |
|- ( t = s -> ( f ` ( B \ t ) ) = ( f ` ( B \ s ) ) ) |
125 |
124
|
difeq2d |
|- ( t = s -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( f ` ( B \ s ) ) ) ) |
126 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ t ) ) ) e. _V ) |
127 |
126
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) e. _V ) |
128 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ s ) ) ) e. _V ) |
129 |
128
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ s e. ~P B ) -> ( B \ ( f ` ( B \ s ) ) ) e. _V ) |
130 |
122 125 127 129
|
fnmptfvd |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> ( g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) <-> A. t e. ~P B ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) ) |
131 |
120 130
|
mpbird |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
132 |
92 131
|
jca |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
133 |
74 132
|
impbida |
|- ( ph -> ( ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) <-> ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) ) |
134 |
133
|
mptcnv |
|- ( ph -> `' ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) = ( g e. ( ~P B ^m ~P B ) |-> ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
135 |
1 2 3
|
dssmapfvd |
|- ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
136 |
135
|
cnveqd |
|- ( ph -> `' D = `' ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
137 |
|
fveq1 |
|- ( f = g -> ( f ` ( b \ s ) ) = ( g ` ( b \ s ) ) ) |
138 |
137
|
difeq2d |
|- ( f = g -> ( b \ ( f ` ( b \ s ) ) ) = ( b \ ( g ` ( b \ s ) ) ) ) |
139 |
138
|
mpteq2dv |
|- ( f = g -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( s e. ~P b |-> ( b \ ( g ` ( b \ s ) ) ) ) ) |
140 |
|
difeq2 |
|- ( s = z -> ( b \ s ) = ( b \ z ) ) |
141 |
140
|
fveq2d |
|- ( s = z -> ( g ` ( b \ s ) ) = ( g ` ( b \ z ) ) ) |
142 |
141
|
difeq2d |
|- ( s = z -> ( b \ ( g ` ( b \ s ) ) ) = ( b \ ( g ` ( b \ z ) ) ) ) |
143 |
142
|
cbvmptv |
|- ( s e. ~P b |-> ( b \ ( g ` ( b \ s ) ) ) ) = ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) |
144 |
139 143
|
eqtrdi |
|- ( f = g -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) |
145 |
144
|
cbvmptv |
|- ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) = ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) |
146 |
145
|
mpteq2i |
|- ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) = ( b e. _V |-> ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) ) |
147 |
1 146
|
eqtri |
|- O = ( b e. _V |-> ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) ) |
148 |
147 2 3
|
dssmapfvd |
|- ( ph -> D = ( g e. ( ~P B ^m ~P B ) |-> ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
149 |
134 136 148
|
3eqtr4d |
|- ( ph -> `' D = D ) |