| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dssmapfvd.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
| 2 |
|
dssmapfvd.d |
|- D = ( O ` B ) |
| 3 |
|
dssmapfvd.b |
|- ( ph -> B e. V ) |
| 4 |
|
simpr |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
| 5 |
|
difeq2 |
|- ( s = t -> ( B \ s ) = ( B \ t ) ) |
| 6 |
5
|
fveq2d |
|- ( s = t -> ( f ` ( B \ s ) ) = ( f ` ( B \ t ) ) ) |
| 7 |
6
|
difeq2d |
|- ( s = t -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( f ` ( B \ t ) ) ) ) |
| 8 |
7
|
cbvmptv |
|- ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( t e. ~P B |-> ( B \ ( f ` ( B \ t ) ) ) ) |
| 9 |
4 8
|
eqtrdi |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g = ( t e. ~P B |-> ( B \ ( f ` ( B \ t ) ) ) ) ) |
| 10 |
|
ssun1 |
|- B C_ ( B u. ( f ` ( B \ t ) ) ) |
| 11 |
10
|
sspwi |
|- ~P B C_ ~P ( B u. ( f ` ( B \ t ) ) ) |
| 12 |
|
pwidg |
|- ( B e. V -> B e. ~P B ) |
| 13 |
3 12
|
syl |
|- ( ph -> B e. ~P B ) |
| 14 |
11 13
|
sselid |
|- ( ph -> B e. ~P ( B u. ( f ` ( B \ t ) ) ) ) |
| 15 |
|
fvex |
|- ( f ` ( B \ t ) ) e. _V |
| 16 |
15
|
elpwun |
|- ( B e. ~P ( B u. ( f ` ( B \ t ) ) ) <-> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
| 17 |
14 16
|
sylib |
|- ( ph -> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) e. ~P B ) |
| 19 |
9 18
|
fmpt3d |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g : ~P B --> ~P B ) |
| 20 |
3
|
pwexd |
|- ( ph -> ~P B e. _V ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> ~P B e. _V ) |
| 22 |
21 21
|
elmapd |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> ( g e. ( ~P B ^m ~P B ) <-> g : ~P B --> ~P B ) ) |
| 23 |
19 22
|
mpbird |
|- ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) -> g e. ( ~P B ^m ~P B ) ) |
| 24 |
23
|
adantrl |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> g e. ( ~P B ^m ~P B ) ) |
| 25 |
|
simplr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
| 26 |
|
difeq2 |
|- ( s = u -> ( B \ s ) = ( B \ u ) ) |
| 27 |
26
|
fveq2d |
|- ( s = u -> ( f ` ( B \ s ) ) = ( f ` ( B \ u ) ) ) |
| 28 |
27
|
difeq2d |
|- ( s = u -> ( B \ ( f ` ( B \ s ) ) ) = ( B \ ( f ` ( B \ u ) ) ) ) |
| 29 |
28
|
cbvmptv |
|- ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) = ( u e. ~P B |-> ( B \ ( f ` ( B \ u ) ) ) ) |
| 30 |
25 29
|
eqtrdi |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> g = ( u e. ~P B |-> ( B \ ( f ` ( B \ u ) ) ) ) ) |
| 31 |
|
difeq2 |
|- ( u = ( B \ t ) -> ( B \ u ) = ( B \ ( B \ t ) ) ) |
| 32 |
31
|
fveq2d |
|- ( u = ( B \ t ) -> ( f ` ( B \ u ) ) = ( f ` ( B \ ( B \ t ) ) ) ) |
| 33 |
32
|
difeq2d |
|- ( u = ( B \ t ) -> ( B \ ( f ` ( B \ u ) ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) /\ u = ( B \ t ) ) -> ( B \ ( f ` ( B \ u ) ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
| 35 |
|
ssun1 |
|- B C_ ( B u. t ) |
| 36 |
35
|
sspwi |
|- ~P B C_ ~P ( B u. t ) |
| 37 |
36 13
|
sselid |
|- ( ph -> B e. ~P ( B u. t ) ) |
| 38 |
|
vex |
|- t e. _V |
| 39 |
38
|
elpwun |
|- ( B e. ~P ( B u. t ) <-> ( B \ t ) e. ~P B ) |
| 40 |
37 39
|
sylib |
|- ( ph -> ( B \ t ) e. ~P B ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
| 42 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) e. _V ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) e. _V ) |
| 44 |
30 34 41 43
|
fvmptd |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( g ` ( B \ t ) ) = ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) |
| 45 |
44
|
difeq2d |
|- ( ( ( ph /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) ) |
| 46 |
45
|
adantlrl |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) ) |
| 47 |
|
elpwi |
|- ( t e. ~P B -> t C_ B ) |
| 48 |
|
dfss4 |
|- ( t C_ B <-> ( B \ ( B \ t ) ) = t ) |
| 49 |
47 48
|
sylib |
|- ( t e. ~P B -> ( B \ ( B \ t ) ) = t ) |
| 50 |
49
|
fveq2d |
|- ( t e. ~P B -> ( f ` ( B \ ( B \ t ) ) ) = ( f ` t ) ) |
| 51 |
50
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( f ` ( B \ ( B \ t ) ) ) ) = ( B \ ( f ` t ) ) ) |
| 52 |
51
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( f ` t ) ) ) ) |
| 53 |
52
|
adantl |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( f ` t ) ) ) ) |
| 54 |
20 20
|
elmapd |
|- ( ph -> ( f e. ( ~P B ^m ~P B ) <-> f : ~P B --> ~P B ) ) |
| 55 |
54
|
biimpa |
|- ( ( ph /\ f e. ( ~P B ^m ~P B ) ) -> f : ~P B --> ~P B ) |
| 56 |
55
|
ffvelcdmda |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( f ` t ) e. ~P B ) |
| 57 |
56
|
elpwid |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( f ` t ) C_ B ) |
| 58 |
|
dfss4 |
|- ( ( f ` t ) C_ B <-> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
| 59 |
57 58
|
sylib |
|- ( ( ( ph /\ f e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
| 60 |
59
|
adantlrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( f ` t ) ) ) = ( f ` t ) ) |
| 61 |
46 53 60
|
3eqtrrd |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) |
| 62 |
61
|
ralrimiva |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> A. t e. ~P B ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) |
| 63 |
|
elmapfn |
|- ( f e. ( ~P B ^m ~P B ) -> f Fn ~P B ) |
| 64 |
63
|
ad2antrl |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> f Fn ~P B ) |
| 65 |
|
difeq2 |
|- ( t = z -> ( B \ t ) = ( B \ z ) ) |
| 66 |
65
|
fveq2d |
|- ( t = z -> ( g ` ( B \ t ) ) = ( g ` ( B \ z ) ) ) |
| 67 |
66
|
difeq2d |
|- ( t = z -> ( B \ ( g ` ( B \ t ) ) ) = ( B \ ( g ` ( B \ z ) ) ) ) |
| 68 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ t ) ) ) e. _V ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) e. _V ) |
| 70 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ z ) ) ) e. _V ) |
| 71 |
70
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) /\ z e. ~P B ) -> ( B \ ( g ` ( B \ z ) ) ) e. _V ) |
| 72 |
64 67 69 71
|
fnmptfvd |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> ( f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) <-> A. t e. ~P B ( f ` t ) = ( B \ ( g ` ( B \ t ) ) ) ) ) |
| 73 |
62 72
|
mpbird |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
| 74 |
24 73
|
jca |
|- ( ( ph /\ ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) -> ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
| 75 |
|
simpr |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
| 76 |
|
difeq2 |
|- ( z = t -> ( B \ z ) = ( B \ t ) ) |
| 77 |
76
|
fveq2d |
|- ( z = t -> ( g ` ( B \ z ) ) = ( g ` ( B \ t ) ) ) |
| 78 |
77
|
difeq2d |
|- ( z = t -> ( B \ ( g ` ( B \ z ) ) ) = ( B \ ( g ` ( B \ t ) ) ) ) |
| 79 |
78
|
cbvmptv |
|- ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) = ( t e. ~P B |-> ( B \ ( g ` ( B \ t ) ) ) ) |
| 80 |
75 79
|
eqtrdi |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f = ( t e. ~P B |-> ( B \ ( g ` ( B \ t ) ) ) ) ) |
| 81 |
|
ssun1 |
|- B C_ ( B u. ( g ` ( B \ t ) ) ) |
| 82 |
81
|
sspwi |
|- ~P B C_ ~P ( B u. ( g ` ( B \ t ) ) ) |
| 83 |
82 13
|
sselid |
|- ( ph -> B e. ~P ( B u. ( g ` ( B \ t ) ) ) ) |
| 84 |
|
fvex |
|- ( g ` ( B \ t ) ) e. _V |
| 85 |
84
|
elpwun |
|- ( B e. ~P ( B u. ( g ` ( B \ t ) ) ) <-> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
| 86 |
83 85
|
sylib |
|- ( ph -> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
| 87 |
86
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ t ) ) ) e. ~P B ) |
| 88 |
80 87
|
fmpt3d |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f : ~P B --> ~P B ) |
| 89 |
20
|
adantr |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> ~P B e. _V ) |
| 90 |
89 89
|
elmapd |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> ( f e. ( ~P B ^m ~P B ) <-> f : ~P B --> ~P B ) ) |
| 91 |
88 90
|
mpbird |
|- ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) -> f e. ( ~P B ^m ~P B ) ) |
| 92 |
91
|
adantrl |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> f e. ( ~P B ^m ~P B ) ) |
| 93 |
|
simplr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) |
| 94 |
|
difeq2 |
|- ( z = u -> ( B \ z ) = ( B \ u ) ) |
| 95 |
94
|
fveq2d |
|- ( z = u -> ( g ` ( B \ z ) ) = ( g ` ( B \ u ) ) ) |
| 96 |
95
|
difeq2d |
|- ( z = u -> ( B \ ( g ` ( B \ z ) ) ) = ( B \ ( g ` ( B \ u ) ) ) ) |
| 97 |
96
|
cbvmptv |
|- ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) = ( u e. ~P B |-> ( B \ ( g ` ( B \ u ) ) ) ) |
| 98 |
93 97
|
eqtrdi |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> f = ( u e. ~P B |-> ( B \ ( g ` ( B \ u ) ) ) ) ) |
| 99 |
31
|
fveq2d |
|- ( u = ( B \ t ) -> ( g ` ( B \ u ) ) = ( g ` ( B \ ( B \ t ) ) ) ) |
| 100 |
99
|
difeq2d |
|- ( u = ( B \ t ) -> ( B \ ( g ` ( B \ u ) ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
| 101 |
100
|
adantl |
|- ( ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) /\ u = ( B \ t ) ) -> ( B \ ( g ` ( B \ u ) ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
| 102 |
40
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
| 103 |
3
|
difexd |
|- ( ph -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) e. _V ) |
| 104 |
103
|
ad2antrr |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) e. _V ) |
| 105 |
98 101 102 104
|
fvmptd |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( f ` ( B \ t ) ) = ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) |
| 106 |
105
|
difeq2d |
|- ( ( ( ph /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) ) |
| 107 |
106
|
adantlrl |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) ) |
| 108 |
49
|
fveq2d |
|- ( t e. ~P B -> ( g ` ( B \ ( B \ t ) ) ) = ( g ` t ) ) |
| 109 |
108
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( g ` ( B \ ( B \ t ) ) ) ) = ( B \ ( g ` t ) ) ) |
| 110 |
109
|
difeq2d |
|- ( t e. ~P B -> ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( g ` t ) ) ) ) |
| 111 |
110
|
adantl |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` ( B \ ( B \ t ) ) ) ) ) = ( B \ ( B \ ( g ` t ) ) ) ) |
| 112 |
20 20
|
elmapd |
|- ( ph -> ( g e. ( ~P B ^m ~P B ) <-> g : ~P B --> ~P B ) ) |
| 113 |
112
|
biimpa |
|- ( ( ph /\ g e. ( ~P B ^m ~P B ) ) -> g : ~P B --> ~P B ) |
| 114 |
113
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( g ` t ) e. ~P B ) |
| 115 |
114
|
elpwid |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( g ` t ) C_ B ) |
| 116 |
|
dfss4 |
|- ( ( g ` t ) C_ B <-> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
| 117 |
115 116
|
sylib |
|- ( ( ( ph /\ g e. ( ~P B ^m ~P B ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
| 118 |
117
|
adantlrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( B \ ( g ` t ) ) ) = ( g ` t ) ) |
| 119 |
107 111 118
|
3eqtrrd |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) |
| 120 |
119
|
ralrimiva |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> A. t e. ~P B ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) |
| 121 |
|
elmapfn |
|- ( g e. ( ~P B ^m ~P B ) -> g Fn ~P B ) |
| 122 |
121
|
ad2antrl |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> g Fn ~P B ) |
| 123 |
|
difeq2 |
|- ( t = s -> ( B \ t ) = ( B \ s ) ) |
| 124 |
123
|
fveq2d |
|- ( t = s -> ( f ` ( B \ t ) ) = ( f ` ( B \ s ) ) ) |
| 125 |
124
|
difeq2d |
|- ( t = s -> ( B \ ( f ` ( B \ t ) ) ) = ( B \ ( f ` ( B \ s ) ) ) ) |
| 126 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ t ) ) ) e. _V ) |
| 127 |
126
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ t e. ~P B ) -> ( B \ ( f ` ( B \ t ) ) ) e. _V ) |
| 128 |
3
|
difexd |
|- ( ph -> ( B \ ( f ` ( B \ s ) ) ) e. _V ) |
| 129 |
128
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) /\ s e. ~P B ) -> ( B \ ( f ` ( B \ s ) ) ) e. _V ) |
| 130 |
122 125 127 129
|
fnmptfvd |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> ( g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) <-> A. t e. ~P B ( g ` t ) = ( B \ ( f ` ( B \ t ) ) ) ) ) |
| 131 |
120 130
|
mpbird |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
| 132 |
92 131
|
jca |
|- ( ( ph /\ ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) -> ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
| 133 |
74 132
|
impbida |
|- ( ph -> ( ( f e. ( ~P B ^m ~P B ) /\ g = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) <-> ( g e. ( ~P B ^m ~P B ) /\ f = ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) ) |
| 134 |
133
|
mptcnv |
|- ( ph -> `' ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) = ( g e. ( ~P B ^m ~P B ) |-> ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
| 135 |
1 2 3
|
dssmapfvd |
|- ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
| 136 |
135
|
cnveqd |
|- ( ph -> `' D = `' ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
| 137 |
|
fveq1 |
|- ( f = g -> ( f ` ( b \ s ) ) = ( g ` ( b \ s ) ) ) |
| 138 |
137
|
difeq2d |
|- ( f = g -> ( b \ ( f ` ( b \ s ) ) ) = ( b \ ( g ` ( b \ s ) ) ) ) |
| 139 |
138
|
mpteq2dv |
|- ( f = g -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( s e. ~P b |-> ( b \ ( g ` ( b \ s ) ) ) ) ) |
| 140 |
|
difeq2 |
|- ( s = z -> ( b \ s ) = ( b \ z ) ) |
| 141 |
140
|
fveq2d |
|- ( s = z -> ( g ` ( b \ s ) ) = ( g ` ( b \ z ) ) ) |
| 142 |
141
|
difeq2d |
|- ( s = z -> ( b \ ( g ` ( b \ s ) ) ) = ( b \ ( g ` ( b \ z ) ) ) ) |
| 143 |
142
|
cbvmptv |
|- ( s e. ~P b |-> ( b \ ( g ` ( b \ s ) ) ) ) = ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) |
| 144 |
139 143
|
eqtrdi |
|- ( f = g -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) |
| 145 |
144
|
cbvmptv |
|- ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) = ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) |
| 146 |
145
|
mpteq2i |
|- ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) = ( b e. _V |-> ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) ) |
| 147 |
1 146
|
eqtri |
|- O = ( b e. _V |-> ( g e. ( ~P b ^m ~P b ) |-> ( z e. ~P b |-> ( b \ ( g ` ( b \ z ) ) ) ) ) ) |
| 148 |
147 2 3
|
dssmapfvd |
|- ( ph -> D = ( g e. ( ~P B ^m ~P B ) |-> ( z e. ~P B |-> ( B \ ( g ` ( B \ z ) ) ) ) ) ) |
| 149 |
134 136 148
|
3eqtr4d |
|- ( ph -> `' D = D ) |