Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapfvd.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
2 |
|
dssmapfvd.d |
|- D = ( O ` B ) |
3 |
|
dssmapfvd.b |
|- ( ph -> B e. V ) |
4 |
|
pweq |
|- ( b = B -> ~P b = ~P B ) |
5 |
4 4
|
oveq12d |
|- ( b = B -> ( ~P b ^m ~P b ) = ( ~P B ^m ~P B ) ) |
6 |
|
id |
|- ( b = B -> b = B ) |
7 |
|
difeq1 |
|- ( b = B -> ( b \ s ) = ( B \ s ) ) |
8 |
7
|
fveq2d |
|- ( b = B -> ( f ` ( b \ s ) ) = ( f ` ( B \ s ) ) ) |
9 |
6 8
|
difeq12d |
|- ( b = B -> ( b \ ( f ` ( b \ s ) ) ) = ( B \ ( f ` ( B \ s ) ) ) ) |
10 |
4 9
|
mpteq12dv |
|- ( b = B -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) |
11 |
5 10
|
mpteq12dv |
|- ( b = B -> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
12 |
3
|
elexd |
|- ( ph -> B e. _V ) |
13 |
|
ovex |
|- ( ~P B ^m ~P B ) e. _V |
14 |
|
mptexg |
|- ( ( ~P B ^m ~P B ) e. _V -> ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) e. _V ) |
15 |
13 14
|
mp1i |
|- ( ph -> ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) e. _V ) |
16 |
1 11 12 15
|
fvmptd3 |
|- ( ph -> ( O ` B ) = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |
17 |
2 16
|
syl5eq |
|- ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) ) |