Metamath Proof Explorer


Theorem dssmapfvd

Description: Value of the duality operator for self-mappings of subsets of a base set, B . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
dssmapfvd.d
|- D = ( O ` B )
dssmapfvd.b
|- ( ph -> B e. V )
Assertion dssmapfvd
|- ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o
 |-  O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) )
2 dssmapfvd.d
 |-  D = ( O ` B )
3 dssmapfvd.b
 |-  ( ph -> B e. V )
4 pweq
 |-  ( b = B -> ~P b = ~P B )
5 4 4 oveq12d
 |-  ( b = B -> ( ~P b ^m ~P b ) = ( ~P B ^m ~P B ) )
6 id
 |-  ( b = B -> b = B )
7 difeq1
 |-  ( b = B -> ( b \ s ) = ( B \ s ) )
8 7 fveq2d
 |-  ( b = B -> ( f ` ( b \ s ) ) = ( f ` ( B \ s ) ) )
9 6 8 difeq12d
 |-  ( b = B -> ( b \ ( f ` ( b \ s ) ) ) = ( B \ ( f ` ( B \ s ) ) ) )
10 4 9 mpteq12dv
 |-  ( b = B -> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) = ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) )
11 5 10 mpteq12dv
 |-  ( b = B -> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) )
12 3 elexd
 |-  ( ph -> B e. _V )
13 ovex
 |-  ( ~P B ^m ~P B ) e. _V
14 mptexg
 |-  ( ( ~P B ^m ~P B ) e. _V -> ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) e. _V )
15 13 14 mp1i
 |-  ( ph -> ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) e. _V )
16 1 11 12 15 fvmptd3
 |-  ( ph -> ( O ` B ) = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) )
17 2 16 syl5eq
 |-  ( ph -> D = ( f e. ( ~P B ^m ~P B ) |-> ( s e. ~P B |-> ( B \ ( f ` ( B \ s ) ) ) ) ) )