| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dssmapfvd.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
| 2 |
|
dssmapfvd.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
dssmapfvd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 4 |
|
pweq |
⊢ ( 𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵 ) |
| 5 |
4 4
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) = ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 6 |
|
id |
⊢ ( 𝑏 = 𝐵 → 𝑏 = 𝐵 ) |
| 7 |
|
difeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∖ 𝑠 ) = ( 𝐵 ∖ 𝑠 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) = ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 9 |
6 8
|
difeq12d |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 10 |
4 9
|
mpteq12dv |
⊢ ( 𝑏 = 𝐵 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 11 |
5 10
|
mpteq12dv |
⊢ ( 𝑏 = 𝐵 → ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
| 12 |
3
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 13 |
|
ovex |
⊢ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∈ V |
| 14 |
|
mptexg |
⊢ ( ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∈ V → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∈ V ) |
| 15 |
13 14
|
mp1i |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ∈ V ) |
| 16 |
1 11 12 15
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |
| 17 |
2 16
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) ) |