Metamath Proof Explorer


Theorem dssmapfvd

Description: Value of the duality operator for self-mappings of subsets of a base set, B . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
dssmapfvd.b ( 𝜑𝐵𝑉 )
Assertion dssmapfvd ( 𝜑𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dssmapfvd.o 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) )
2 dssmapfvd.d 𝐷 = ( 𝑂𝐵 )
3 dssmapfvd.b ( 𝜑𝐵𝑉 )
4 pweq ( 𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵 )
5 4 4 oveq12d ( 𝑏 = 𝐵 → ( 𝒫 𝑏m 𝒫 𝑏 ) = ( 𝒫 𝐵m 𝒫 𝐵 ) )
6 id ( 𝑏 = 𝐵𝑏 = 𝐵 )
7 difeq1 ( 𝑏 = 𝐵 → ( 𝑏𝑠 ) = ( 𝐵𝑠 ) )
8 7 fveq2d ( 𝑏 = 𝐵 → ( 𝑓 ‘ ( 𝑏𝑠 ) ) = ( 𝑓 ‘ ( 𝐵𝑠 ) ) )
9 6 8 difeq12d ( 𝑏 = 𝐵 → ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) = ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) )
10 4 9 mpteq12dv ( 𝑏 = 𝐵 → ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) )
11 5 10 mpteq12dv ( 𝑏 = 𝐵 → ( 𝑓 ∈ ( 𝒫 𝑏m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏𝑠 ) ) ) ) ) = ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) )
12 3 elexd ( 𝜑𝐵 ∈ V )
13 ovex ( 𝒫 𝐵m 𝒫 𝐵 ) ∈ V
14 mptexg ( ( 𝒫 𝐵m 𝒫 𝐵 ) ∈ V → ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) ∈ V )
15 13 14 mp1i ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) ∈ V )
16 1 11 12 15 fvmptd3 ( 𝜑 → ( 𝑂𝐵 ) = ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) )
17 2 16 syl5eq ( 𝜑𝐷 = ( 𝑓 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ↦ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝐵 ∖ ( 𝑓 ‘ ( 𝐵𝑠 ) ) ) ) ) )