| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dssmapfvd.o | ⊢ 𝑂  =  ( 𝑏  ∈  V  ↦  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 )  ↦  ( 𝑠  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  ( 𝑓 ‘ ( 𝑏  ∖  𝑠 ) ) ) ) ) ) | 
						
							| 2 |  | dssmapfvd.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | dssmapfvd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | dssmapfv2d.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | dssmapfv2d.g | ⊢ 𝐺  =  ( 𝐷 ‘ 𝐹 ) | 
						
							| 6 | 1 2 3 | dssmapfvd | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ↦  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝑓 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝐵  ∖  𝑠 ) )  =  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 8 | 7 | difeq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝐵  ∖  ( 𝑓 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( 𝑓  =  𝐹  →  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝑓 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  =  𝐹 )  →  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝑓 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 11 |  | pwexg | ⊢ ( 𝐵  ∈  𝑉  →  𝒫  𝐵  ∈  V ) | 
						
							| 12 |  | mptexg | ⊢ ( 𝒫  𝐵  ∈  V  →  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  ∈  V ) | 
						
							| 13 | 3 11 12 | 3syl | ⊢ ( 𝜑  →  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  ∈  V ) | 
						
							| 14 | 6 10 4 13 | fvmptd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  =  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 15 | 5 14 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑠  ∈  𝒫  𝐵  ↦  ( 𝐵  ∖  ( 𝐹 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) |