| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
clsnei.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
| 3 |
|
clsnei.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
| 4 |
|
clsnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 5 |
|
clsnei.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
| 6 |
|
clsnei.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
| 7 |
5
|
cnveqi |
⊢ ◡ 𝐻 = ◡ ( 𝐹 ∘ 𝐷 ) |
| 8 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐷 ) = ( ◡ 𝐷 ∘ ◡ 𝐹 ) |
| 9 |
7 8
|
eqtri |
⊢ ◡ 𝐻 = ( ◡ 𝐷 ∘ ◡ 𝐹 ) |
| 10 |
3 5 6
|
clsneibex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 12 |
2 3 11
|
dssmapnvod |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ◡ 𝐷 = 𝐷 ) |
| 13 |
|
pwexg |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝒫 𝐵 ∈ V ) |
| 15 |
|
eqid |
⊢ ( 𝐵 𝑂 𝒫 𝐵 ) = ( 𝐵 𝑂 𝒫 𝐵 ) |
| 16 |
1 14 11 4 15
|
fsovcnvd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ◡ 𝐹 = ( 𝐵 𝑂 𝒫 𝐵 ) ) |
| 17 |
12 16
|
coeq12d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( ◡ 𝐷 ∘ ◡ 𝐹 ) = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) ) |
| 18 |
10 17
|
mpdan |
⊢ ( 𝜑 → ( ◡ 𝐷 ∘ ◡ 𝐹 ) = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) ) |
| 19 |
9 18
|
eqtrid |
⊢ ( 𝜑 → ◡ 𝐻 = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) ) |