Metamath Proof Explorer


Theorem clsneicnv

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
clsnei.d 𝐷 = ( 𝑃𝐵 )
clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
clsnei.h 𝐻 = ( 𝐹𝐷 )
clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
Assertion clsneicnv ( 𝜑 𝐻 = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 clsnei.d 𝐷 = ( 𝑃𝐵 )
4 clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 clsnei.h 𝐻 = ( 𝐹𝐷 )
6 clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
7 5 cnveqi 𝐻 = ( 𝐹𝐷 )
8 cnvco ( 𝐹𝐷 ) = ( 𝐷 𝐹 )
9 7 8 eqtri 𝐻 = ( 𝐷 𝐹 )
10 3 5 6 clsneibex ( 𝜑𝐵 ∈ V )
11 simpr ( ( 𝜑𝐵 ∈ V ) → 𝐵 ∈ V )
12 2 3 11 dssmapnvod ( ( 𝜑𝐵 ∈ V ) → 𝐷 = 𝐷 )
13 pwexg ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V )
14 13 adantl ( ( 𝜑𝐵 ∈ V ) → 𝒫 𝐵 ∈ V )
15 eqid ( 𝐵 𝑂 𝒫 𝐵 ) = ( 𝐵 𝑂 𝒫 𝐵 )
16 1 14 11 4 15 fsovcnvd ( ( 𝜑𝐵 ∈ V ) → 𝐹 = ( 𝐵 𝑂 𝒫 𝐵 ) )
17 12 16 coeq12d ( ( 𝜑𝐵 ∈ V ) → ( 𝐷 𝐹 ) = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) )
18 10 17 mpdan ( 𝜑 → ( 𝐷 𝐹 ) = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) )
19 9 18 syl5eq ( 𝜑 𝐻 = ( 𝐷 ∘ ( 𝐵 𝑂 𝒫 𝐵 ) ) )