| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | clsnei.p |  |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d |  |-  D = ( P ` B ) | 
						
							| 4 |  | clsnei.f |  |-  F = ( ~P B O B ) | 
						
							| 5 |  | clsnei.h |  |-  H = ( F o. D ) | 
						
							| 6 |  | clsnei.r |  |-  ( ph -> K H N ) | 
						
							| 7 | 5 | cnveqi |  |-  `' H = `' ( F o. D ) | 
						
							| 8 |  | cnvco |  |-  `' ( F o. D ) = ( `' D o. `' F ) | 
						
							| 9 | 7 8 | eqtri |  |-  `' H = ( `' D o. `' F ) | 
						
							| 10 | 3 5 6 | clsneibex |  |-  ( ph -> B e. _V ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ B e. _V ) -> B e. _V ) | 
						
							| 12 | 2 3 11 | dssmapnvod |  |-  ( ( ph /\ B e. _V ) -> `' D = D ) | 
						
							| 13 |  | pwexg |  |-  ( B e. _V -> ~P B e. _V ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ B e. _V ) -> ~P B e. _V ) | 
						
							| 15 |  | eqid |  |-  ( B O ~P B ) = ( B O ~P B ) | 
						
							| 16 | 1 14 11 4 15 | fsovcnvd |  |-  ( ( ph /\ B e. _V ) -> `' F = ( B O ~P B ) ) | 
						
							| 17 | 12 16 | coeq12d |  |-  ( ( ph /\ B e. _V ) -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) ) | 
						
							| 18 | 10 17 | mpdan |  |-  ( ph -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) ) | 
						
							| 19 | 9 18 | eqtrid |  |-  ( ph -> `' H = ( D o. ( B O ~P B ) ) ) |