Metamath Proof Explorer


Theorem clsneicnv

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
clsnei.p
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
clsnei.d
|- D = ( P ` B )
clsnei.f
|- F = ( ~P B O B )
clsnei.h
|- H = ( F o. D )
clsnei.r
|- ( ph -> K H N )
Assertion clsneicnv
|- ( ph -> `' H = ( D o. ( B O ~P B ) ) )

Proof

Step Hyp Ref Expression
1 clsnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 clsnei.p
 |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
3 clsnei.d
 |-  D = ( P ` B )
4 clsnei.f
 |-  F = ( ~P B O B )
5 clsnei.h
 |-  H = ( F o. D )
6 clsnei.r
 |-  ( ph -> K H N )
7 5 cnveqi
 |-  `' H = `' ( F o. D )
8 cnvco
 |-  `' ( F o. D ) = ( `' D o. `' F )
9 7 8 eqtri
 |-  `' H = ( `' D o. `' F )
10 3 5 6 clsneibex
 |-  ( ph -> B e. _V )
11 simpr
 |-  ( ( ph /\ B e. _V ) -> B e. _V )
12 2 3 11 dssmapnvod
 |-  ( ( ph /\ B e. _V ) -> `' D = D )
13 pwexg
 |-  ( B e. _V -> ~P B e. _V )
14 13 adantl
 |-  ( ( ph /\ B e. _V ) -> ~P B e. _V )
15 eqid
 |-  ( B O ~P B ) = ( B O ~P B )
16 1 14 11 4 15 fsovcnvd
 |-  ( ( ph /\ B e. _V ) -> `' F = ( B O ~P B ) )
17 12 16 coeq12d
 |-  ( ( ph /\ B e. _V ) -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) )
18 10 17 mpdan
 |-  ( ph -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) )
19 9 18 eqtrid
 |-  ( ph -> `' H = ( D o. ( B O ~P B ) ) )