| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
| 2 |
|
clsnei.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
| 3 |
|
clsnei.d |
|- D = ( P ` B ) |
| 4 |
|
clsnei.f |
|- F = ( ~P B O B ) |
| 5 |
|
clsnei.h |
|- H = ( F o. D ) |
| 6 |
|
clsnei.r |
|- ( ph -> K H N ) |
| 7 |
5
|
cnveqi |
|- `' H = `' ( F o. D ) |
| 8 |
|
cnvco |
|- `' ( F o. D ) = ( `' D o. `' F ) |
| 9 |
7 8
|
eqtri |
|- `' H = ( `' D o. `' F ) |
| 10 |
3 5 6
|
clsneibex |
|- ( ph -> B e. _V ) |
| 11 |
|
simpr |
|- ( ( ph /\ B e. _V ) -> B e. _V ) |
| 12 |
2 3 11
|
dssmapnvod |
|- ( ( ph /\ B e. _V ) -> `' D = D ) |
| 13 |
|
pwexg |
|- ( B e. _V -> ~P B e. _V ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ B e. _V ) -> ~P B e. _V ) |
| 15 |
|
eqid |
|- ( B O ~P B ) = ( B O ~P B ) |
| 16 |
1 14 11 4 15
|
fsovcnvd |
|- ( ( ph /\ B e. _V ) -> `' F = ( B O ~P B ) ) |
| 17 |
12 16
|
coeq12d |
|- ( ( ph /\ B e. _V ) -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) ) |
| 18 |
10 17
|
mpdan |
|- ( ph -> ( `' D o. `' F ) = ( D o. ( B O ~P B ) ) ) |
| 19 |
9 18
|
eqtrid |
|- ( ph -> `' H = ( D o. ( B O ~P B ) ) ) |