| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddabl.g |
|- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
|
cnex |
|- CC e. _V |
| 4 |
1
|
grpbase |
|- ( CC e. _V -> CC = ( Base ` G ) ) |
| 5 |
3 4
|
ax-mp |
|- CC = ( Base ` G ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
|
addex |
|- + e. _V |
| 8 |
1
|
grpplusg |
|- ( + e. _V -> + = ( +g ` G ) ) |
| 9 |
7 8
|
ax-mp |
|- + = ( +g ` G ) |
| 10 |
|
id |
|- ( 0 e. CC -> 0 e. CC ) |
| 11 |
|
addlid |
|- ( x e. CC -> ( 0 + x ) = x ) |
| 12 |
11
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) |
| 13 |
|
addrid |
|- ( x e. CC -> ( x + 0 ) = x ) |
| 14 |
13
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( x + 0 ) = x ) |
| 15 |
5 6 9 10 12 14
|
ismgmid2 |
|- ( 0 e. CC -> 0 = ( 0g ` G ) ) |
| 16 |
2 15
|
ax-mp |
|- 0 = ( 0g ` G ) |
| 17 |
16
|
eqcomi |
|- ( 0g ` G ) = 0 |