| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
mullid |
|- ( x e. CC -> ( 1 x. x ) = x ) |
| 3 |
|
mulrid |
|- ( x e. CC -> ( x x. 1 ) = x ) |
| 4 |
2 3
|
jca |
|- ( x e. CC -> ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
| 5 |
4
|
rgen |
|- A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) |
| 6 |
1 5
|
pm3.2i |
|- ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
| 7 |
|
cnring |
|- CCfld e. Ring |
| 8 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 9 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 10 |
|
eqid |
|- ( 1r ` CCfld ) = ( 1r ` CCfld ) |
| 11 |
8 9 10
|
isringid |
|- ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) ) |
| 12 |
7 11
|
ax-mp |
|- ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) |
| 13 |
6 12
|
mpbi |
|- ( 1r ` CCfld ) = 1 |
| 14 |
13
|
eqcomi |
|- 1 = ( 1r ` CCfld ) |