| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmsgngrp.u |
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 2 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 3 |
2
|
cnmsgnsubg |
|- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 4 |
|
cnex |
|- CC e. _V |
| 5 |
4
|
difexi |
|- ( CC \ { 0 } ) e. _V |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 8 |
|
eldifsn |
|- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
| 9 |
6 7 8
|
mpbir2an |
|- 1 e. ( CC \ { 0 } ) |
| 10 |
|
neg1cn |
|- -u 1 e. CC |
| 11 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 12 |
|
eldifsn |
|- ( -u 1 e. ( CC \ { 0 } ) <-> ( -u 1 e. CC /\ -u 1 =/= 0 ) ) |
| 13 |
10 11 12
|
mpbir2an |
|- -u 1 e. ( CC \ { 0 } ) |
| 14 |
|
prssi |
|- ( ( 1 e. ( CC \ { 0 } ) /\ -u 1 e. ( CC \ { 0 } ) ) -> { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
| 15 |
9 13 14
|
mp2an |
|- { 1 , -u 1 } C_ ( CC \ { 0 } ) |
| 16 |
|
ressabs |
|- ( ( ( CC \ { 0 } ) e. _V /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 17 |
5 15 16
|
mp2an |
|- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 18 |
1 17
|
eqtr4i |
|- U = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) |
| 19 |
18
|
subggrp |
|- ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> U e. Grp ) |
| 20 |
3 19
|
ax-mp |
|- U e. Grp |