Metamath Proof Explorer


Theorem cnmsgngrp

Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u U=mulGrpfld𝑠11
Assertion cnmsgngrp UGrp

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u U=mulGrpfld𝑠11
2 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
3 2 cnmsgnsubg 11SubGrpmulGrpfld𝑠0
4 cnex V
5 4 difexi 0V
6 ax-1cn 1
7 ax-1ne0 10
8 eldifsn 10110
9 6 7 8 mpbir2an 10
10 neg1cn 1
11 neg1ne0 10
12 eldifsn 10110
13 10 11 12 mpbir2an 10
14 prssi 1010110
15 9 13 14 mp2an 110
16 ressabs 0V110mulGrpfld𝑠0𝑠11=mulGrpfld𝑠11
17 5 15 16 mp2an mulGrpfld𝑠0𝑠11=mulGrpfld𝑠11
18 1 17 eqtr4i U=mulGrpfld𝑠0𝑠11
19 18 subggrp 11SubGrpmulGrpfld𝑠0UGrp
20 3 19 ax-mp UGrp