Metamath Proof Explorer


Theorem cnn0opn

Description: The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025)

Ref Expression
Assertion cnn0opn
|- ( CC \ { 0 } ) e. ( TopOpen ` CCfld )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
2 1 cnfldhaus
 |-  ( TopOpen ` CCfld ) e. Haus
3 0cn
 |-  0 e. CC
4 unicntop
 |-  CC = U. ( TopOpen ` CCfld )
5 4 sncld
 |-  ( ( ( TopOpen ` CCfld ) e. Haus /\ 0 e. CC ) -> { 0 } e. ( Clsd ` ( TopOpen ` CCfld ) ) )
6 2 3 5 mp2an
 |-  { 0 } e. ( Clsd ` ( TopOpen ` CCfld ) )
7 4 cldopn
 |-  ( { 0 } e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) )
8 6 7 ax-mp
 |-  ( CC \ { 0 } ) e. ( TopOpen ` CCfld )