Description: The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | cnn0opn | ⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
2 | 1 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
3 | 0cn | ⊢ 0 ∈ ℂ | |
4 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
5 | 4 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 0 ∈ ℂ ) → { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
6 | 2 3 5 | mp2an | ⊢ { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
7 | 4 | cldopn | ⊢ ( { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) |
8 | 6 7 | ax-mp | ⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |