Metamath Proof Explorer


Theorem cnn0opn

Description: The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025)

Ref Expression
Assertion cnn0opn ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 cnfldhaus ( TopOpen ‘ ℂfld ) ∈ Haus
3 0cn 0 ∈ ℂ
4 unicntop ℂ = ( TopOpen ‘ ℂfld )
5 4 sncld ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 0 ∈ ℂ ) → { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )
6 2 3 5 mp2an { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) )
7 4 cldopn ( { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) )
8 6 7 ax-mp ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld )