| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 2 | 1 | a1i |  |-  ( T. -> CC = ( Base ` CCfld ) ) | 
						
							| 3 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 4 | 3 | a1i |  |-  ( T. -> + = ( +g ` CCfld ) ) | 
						
							| 5 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 6 | 5 | a1i |  |-  ( T. -> x. = ( .r ` CCfld ) ) | 
						
							| 7 |  | cnfldcj |  |-  * = ( *r ` CCfld ) | 
						
							| 8 | 7 | a1i |  |-  ( T. -> * = ( *r ` CCfld ) ) | 
						
							| 9 |  | cnring |  |-  CCfld e. Ring | 
						
							| 10 | 9 | a1i |  |-  ( T. -> CCfld e. Ring ) | 
						
							| 11 |  | cjcl |  |-  ( x e. CC -> ( * ` x ) e. CC ) | 
						
							| 12 | 11 | adantl |  |-  ( ( T. /\ x e. CC ) -> ( * ` x ) e. CC ) | 
						
							| 13 |  | cjadd |  |-  ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) | 
						
							| 15 |  | mulcom |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( * ` ( y x. x ) ) ) | 
						
							| 17 |  | cjmul |  |-  ( ( y e. CC /\ x e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) | 
						
							| 18 | 17 | ancoms |  |-  ( ( x e. CC /\ y e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) | 
						
							| 19 | 16 18 | eqtrd |  |-  ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) | 
						
							| 20 | 19 | 3adant1 |  |-  ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) | 
						
							| 21 |  | cjcj |  |-  ( x e. CC -> ( * ` ( * ` x ) ) = x ) | 
						
							| 22 | 21 | adantl |  |-  ( ( T. /\ x e. CC ) -> ( * ` ( * ` x ) ) = x ) | 
						
							| 23 | 2 4 6 8 10 12 14 20 22 | issrngd |  |-  ( T. -> CCfld e. *Ring ) | 
						
							| 24 | 23 | mptru |  |-  CCfld e. *Ring |