| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
|
mptresid |
|- ( _I |` CC ) = ( z e. CC |-> z ) |
| 4 |
|
df-idp |
|- Xp = ( _I |` CC ) |
| 5 |
|
exp1 |
|- ( z e. CC -> ( z ^ 1 ) = z ) |
| 6 |
5
|
oveq2d |
|- ( z e. CC -> ( 1 x. ( z ^ 1 ) ) = ( 1 x. z ) ) |
| 7 |
|
mullid |
|- ( z e. CC -> ( 1 x. z ) = z ) |
| 8 |
6 7
|
eqtrd |
|- ( z e. CC -> ( 1 x. ( z ^ 1 ) ) = z ) |
| 9 |
8
|
mpteq2ia |
|- ( z e. CC |-> ( 1 x. ( z ^ 1 ) ) ) = ( z e. CC |-> z ) |
| 10 |
3 4 9
|
3eqtr4i |
|- Xp = ( z e. CC |-> ( 1 x. ( z ^ 1 ) ) ) |
| 11 |
10
|
coe1term |
|- ( ( 1 e. CC /\ 1 e. NN0 /\ A e. NN0 ) -> ( ( coeff ` Xp ) ` A ) = if ( A = 1 , 1 , 0 ) ) |
| 12 |
1 2 11
|
mp3an12 |
|- ( A e. NN0 -> ( ( coeff ` Xp ) ` A ) = if ( A = 1 , 1 , 0 ) ) |