Metamath Proof Explorer


Theorem coeidp

Description: The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion coeidp A0coeffXpA=ifA=110

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 1nn0 10
3 mptresid I=zz
4 df-idp Xp=I
5 exp1 zz1=z
6 5 oveq2d z1z1=1z
7 mullid z1z=z
8 6 7 eqtrd z1z1=z
9 8 mpteq2ia z1z1=zz
10 3 4 9 3eqtr4i Xp=z1z1
11 10 coe1term 110A0coeffXpA=ifA=110
12 1 2 11 mp3an12 A0coeffXpA=ifA=110