Metamath Proof Explorer


Theorem dgrid

Description: The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion dgrid degXp=1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 10
3 1nn0 10
4 mptresid I=zz
5 df-idp Xp=I
6 exp1 zz1=z
7 6 oveq2d z1z1=1z
8 mullid z1z=z
9 7 8 eqtrd z1z1=z
10 9 mpteq2ia z1z1=zz
11 4 5 10 3eqtr4i Xp=z1z1
12 11 dgr1term 11010degXp=1
13 1 2 3 12 mp3an degXp=1