| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colinearperm4 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> C Colinear <. A , B >. ) ) | 
						
							| 2 |  | 3anrot |  |-  ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 3 |  | colinearperm1 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( C Colinear <. A , B >. <-> C Colinear <. B , A >. ) ) | 
						
							| 4 | 2 3 | sylan2br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Colinear <. A , B >. <-> C Colinear <. B , A >. ) ) | 
						
							| 5 | 1 4 | bitrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> C Colinear <. B , A >. ) ) |