Metamath Proof Explorer


Theorem collexd

Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis collexd.1
|- ( ph -> A e. V )
Assertion collexd
|- ( ph -> ( F Coll A ) e. _V )

Proof

Step Hyp Ref Expression
1 collexd.1
 |-  ( ph -> A e. V )
2 df-coll
 |-  ( F Coll A ) = U_ x e. A Scott ( F " { x } )
3 scottex2
 |-  Scott ( F " { x } ) e. _V
4 3 a1i
 |-  ( ph -> Scott ( F " { x } ) e. _V )
5 4 ralrimivw
 |-  ( ph -> A. x e. A Scott ( F " { x } ) e. _V )
6 iunexg
 |-  ( ( A e. V /\ A. x e. A Scott ( F " { x } ) e. _V ) -> U_ x e. A Scott ( F " { x } ) e. _V )
7 1 5 6 syl2anc
 |-  ( ph -> U_ x e. A Scott ( F " { x } ) e. _V )
8 2 7 eqeltrid
 |-  ( ph -> ( F Coll A ) e. _V )