Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | compleq | |- ( A = B <-> ( _V \ A ) = ( _V \ B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | complss | |- ( A C_ B <-> ( _V \ B ) C_ ( _V \ A ) ) | |
| 2 | complss | |- ( B C_ A <-> ( _V \ A ) C_ ( _V \ B ) ) | |
| 3 | 1 2 | anbi12ci | |- ( ( A C_ B /\ B C_ A ) <-> ( ( _V \ A ) C_ ( _V \ B ) /\ ( _V \ B ) C_ ( _V \ A ) ) ) | 
| 4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) | |
| 5 | eqss | |- ( ( _V \ A ) = ( _V \ B ) <-> ( ( _V \ A ) C_ ( _V \ B ) /\ ( _V \ B ) C_ ( _V \ A ) ) ) | |
| 6 | 3 4 5 | 3bitr4i | |- ( A = B <-> ( _V \ A ) = ( _V \ B ) ) |