Metamath Proof Explorer


Theorem congneg

Description: If two integers are congruent mod A , so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congneg
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( -u B - -u C ) )

Proof

Step Hyp Ref Expression
1 congsym
 |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) )
2 zcn
 |-  ( B e. ZZ -> B e. CC )
3 zcn
 |-  ( C e. ZZ -> C e. CC )
4 neg2sub
 |-  ( ( B e. CC /\ C e. CC ) -> ( -u B - -u C ) = ( C - B ) )
5 2 3 4 syl2an
 |-  ( ( B e. ZZ /\ C e. ZZ ) -> ( -u B - -u C ) = ( C - B ) )
6 5 ad2ant2lr
 |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( -u B - -u C ) = ( C - B ) )
7 1 6 breqtrrd
 |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( -u B - -u C ) )