Metamath Proof Explorer


Theorem congneg

Description: If two integers are congruent mod A , so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congneg ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵𝐶 ) ) ) → 𝐴 ∥ ( - 𝐵 − - 𝐶 ) )

Proof

Step Hyp Ref Expression
1 congsym ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵𝐶 ) ) ) → 𝐴 ∥ ( 𝐶𝐵 ) )
2 zcn ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ )
3 zcn ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ )
4 neg2sub ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶𝐵 ) )
5 2 3 4 syl2an ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶𝐵 ) )
6 5 ad2ant2lr ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵𝐶 ) ) ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶𝐵 ) )
7 1 6 breqtrrd ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵𝐶 ) ) ) → 𝐴 ∥ ( - 𝐵 − - 𝐶 ) )