| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( B - C ) ) | 
						
							| 2 |  | zcn |  |-  ( C e. ZZ -> C e. CC ) | 
						
							| 3 | 2 | ad2antrl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. CC ) | 
						
							| 4 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. CC ) | 
						
							| 6 | 3 5 | negsubdi2d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> -u ( C - B ) = ( B - C ) ) | 
						
							| 7 | 1 6 | breqtrrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || -u ( C - B ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A e. ZZ ) | 
						
							| 9 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. ZZ ) | 
						
							| 10 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. ZZ ) | 
						
							| 11 | 9 10 | zsubcld |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( C - B ) e. ZZ ) | 
						
							| 12 |  | dvdsnegb |  |-  ( ( A e. ZZ /\ ( C - B ) e. ZZ ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) | 
						
							| 13 | 8 11 12 | syl2anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) | 
						
							| 14 | 7 13 | mpbird |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) |