| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
|- _pi e. CC |
| 2 |
1
|
a1i |
|- ( A e. CC -> _pi e. CC ) |
| 3 |
2
|
halfcld |
|- ( A e. CC -> ( _pi / 2 ) e. CC ) |
| 4 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 5 |
3 4
|
addcld |
|- ( A e. CC -> ( ( _pi / 2 ) + A ) e. CC ) |
| 6 |
|
sineq0 |
|- ( ( ( _pi / 2 ) + A ) e. CC -> ( ( sin ` ( ( _pi / 2 ) + A ) ) = 0 <-> ( ( ( _pi / 2 ) + A ) / _pi ) e. ZZ ) ) |
| 7 |
5 6
|
syl |
|- ( A e. CC -> ( ( sin ` ( ( _pi / 2 ) + A ) ) = 0 <-> ( ( ( _pi / 2 ) + A ) / _pi ) e. ZZ ) ) |
| 8 |
|
sinhalfpip |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) + A ) ) = ( cos ` A ) ) |
| 9 |
8
|
eqeq1d |
|- ( A e. CC -> ( ( sin ` ( ( _pi / 2 ) + A ) ) = 0 <-> ( cos ` A ) = 0 ) ) |
| 10 |
|
pire |
|- _pi e. RR |
| 11 |
|
pipos |
|- 0 < _pi |
| 12 |
10 11
|
gt0ne0ii |
|- _pi =/= 0 |
| 13 |
12
|
a1i |
|- ( A e. CC -> _pi =/= 0 ) |
| 14 |
3 4 2 13
|
divdird |
|- ( A e. CC -> ( ( ( _pi / 2 ) + A ) / _pi ) = ( ( ( _pi / 2 ) / _pi ) + ( A / _pi ) ) ) |
| 15 |
|
2cnd |
|- ( A e. CC -> 2 e. CC ) |
| 16 |
|
2ne0 |
|- 2 =/= 0 |
| 17 |
16
|
a1i |
|- ( A e. CC -> 2 =/= 0 ) |
| 18 |
2 15 2 17 13
|
divdiv32d |
|- ( A e. CC -> ( ( _pi / 2 ) / _pi ) = ( ( _pi / _pi ) / 2 ) ) |
| 19 |
2 13
|
dividd |
|- ( A e. CC -> ( _pi / _pi ) = 1 ) |
| 20 |
19
|
oveq1d |
|- ( A e. CC -> ( ( _pi / _pi ) / 2 ) = ( 1 / 2 ) ) |
| 21 |
18 20
|
eqtrd |
|- ( A e. CC -> ( ( _pi / 2 ) / _pi ) = ( 1 / 2 ) ) |
| 22 |
21
|
oveq1d |
|- ( A e. CC -> ( ( ( _pi / 2 ) / _pi ) + ( A / _pi ) ) = ( ( 1 / 2 ) + ( A / _pi ) ) ) |
| 23 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
| 24 |
23
|
halfcld |
|- ( A e. CC -> ( 1 / 2 ) e. CC ) |
| 25 |
4 2 13
|
divcld |
|- ( A e. CC -> ( A / _pi ) e. CC ) |
| 26 |
24 25
|
addcomd |
|- ( A e. CC -> ( ( 1 / 2 ) + ( A / _pi ) ) = ( ( A / _pi ) + ( 1 / 2 ) ) ) |
| 27 |
14 22 26
|
3eqtrd |
|- ( A e. CC -> ( ( ( _pi / 2 ) + A ) / _pi ) = ( ( A / _pi ) + ( 1 / 2 ) ) ) |
| 28 |
27
|
eleq1d |
|- ( A e. CC -> ( ( ( ( _pi / 2 ) + A ) / _pi ) e. ZZ <-> ( ( A / _pi ) + ( 1 / 2 ) ) e. ZZ ) ) |
| 29 |
7 9 28
|
3bitr3d |
|- ( A e. CC -> ( ( cos ` A ) = 0 <-> ( ( A / _pi ) + ( 1 / 2 ) ) e. ZZ ) ) |