Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
3 |
2
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
4 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
5 |
3 4
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) + 𝐴 ) ∈ ℂ ) |
6 |
|
sineq0 |
⊢ ( ( ( π / 2 ) + 𝐴 ) ∈ ℂ → ( ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = 0 ↔ ( ( ( π / 2 ) + 𝐴 ) / π ) ∈ ℤ ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = 0 ↔ ( ( ( π / 2 ) + 𝐴 ) / π ) ∈ ℤ ) ) |
8 |
|
sinhalfpip |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = 0 ↔ ( cos ‘ 𝐴 ) = 0 ) ) |
10 |
|
pire |
⊢ π ∈ ℝ |
11 |
|
pipos |
⊢ 0 < π |
12 |
10 11
|
gt0ne0ii |
⊢ π ≠ 0 |
13 |
12
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ≠ 0 ) |
14 |
3 4 2 13
|
divdird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( π / 2 ) + 𝐴 ) / π ) = ( ( ( π / 2 ) / π ) + ( 𝐴 / π ) ) ) |
15 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
16 |
|
2ne0 |
⊢ 2 ≠ 0 |
17 |
16
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
18 |
2 15 2 17 13
|
divdiv32d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) / π ) = ( ( π / π ) / 2 ) ) |
19 |
2 13
|
dividd |
⊢ ( 𝐴 ∈ ℂ → ( π / π ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / π ) / 2 ) = ( 1 / 2 ) ) |
21 |
18 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) / π ) = ( 1 / 2 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( π / 2 ) / π ) + ( 𝐴 / π ) ) = ( ( 1 / 2 ) + ( 𝐴 / π ) ) ) |
23 |
|
1cnd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
24 |
23
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℂ ) |
25 |
4 2 13
|
divcld |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / π ) ∈ ℂ ) |
26 |
24 25
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 / 2 ) + ( 𝐴 / π ) ) = ( ( 𝐴 / π ) + ( 1 / 2 ) ) ) |
27 |
14 22 26
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( π / 2 ) + 𝐴 ) / π ) = ( ( 𝐴 / π ) + ( 1 / 2 ) ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( π / 2 ) + 𝐴 ) / π ) ∈ ℤ ↔ ( ( 𝐴 / π ) + ( 1 / 2 ) ) ∈ ℤ ) ) |
29 |
7 9 28
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 0 ↔ ( ( 𝐴 / π ) + ( 1 / 2 ) ) ∈ ℤ ) ) |