Step |
Hyp |
Ref |
Expression |
1 |
|
cosnopne.b |
|- ( ph -> B e. W ) |
2 |
|
cosnopne.c |
|- ( ph -> C e. X ) |
3 |
|
cosnopne.1 |
|- ( ph -> A =/= D ) |
4 |
|
dmsnopg |
|- ( B e. W -> dom { <. A , B >. } = { A } ) |
5 |
1 4
|
syl |
|- ( ph -> dom { <. A , B >. } = { A } ) |
6 |
|
rnsnopg |
|- ( C e. X -> ran { <. C , D >. } = { D } ) |
7 |
2 6
|
syl |
|- ( ph -> ran { <. C , D >. } = { D } ) |
8 |
5 7
|
ineq12d |
|- ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = ( { A } i^i { D } ) ) |
9 |
|
disjsn2 |
|- ( A =/= D -> ( { A } i^i { D } ) = (/) ) |
10 |
3 9
|
syl |
|- ( ph -> ( { A } i^i { D } ) = (/) ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = (/) ) |
12 |
11
|
coemptyd |
|- ( ph -> ( { <. A , B >. } o. { <. C , D >. } ) = (/) ) |