| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosnopne.b |  |-  ( ph -> B e. W ) | 
						
							| 2 |  | cosnopne.c |  |-  ( ph -> C e. X ) | 
						
							| 3 |  | cosnopne.1 |  |-  ( ph -> A =/= D ) | 
						
							| 4 |  | dmsnopg |  |-  ( B e. W -> dom { <. A , B >. } = { A } ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> dom { <. A , B >. } = { A } ) | 
						
							| 6 |  | rnsnopg |  |-  ( C e. X -> ran { <. C , D >. } = { D } ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> ran { <. C , D >. } = { D } ) | 
						
							| 8 | 5 7 | ineq12d |  |-  ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = ( { A } i^i { D } ) ) | 
						
							| 9 |  | disjsn2 |  |-  ( A =/= D -> ( { A } i^i { D } ) = (/) ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> ( { A } i^i { D } ) = (/) ) | 
						
							| 11 | 8 10 | eqtrd |  |-  ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = (/) ) | 
						
							| 12 | 11 | coemptyd |  |-  ( ph -> ( { <. A , B >. } o. { <. C , D >. } ) = (/) ) |