Metamath Proof Explorer


Theorem cosnopne

Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnopne.b
|- ( ph -> B e. W )
cosnopne.c
|- ( ph -> C e. X )
cosnopne.1
|- ( ph -> A =/= D )
Assertion cosnopne
|- ( ph -> ( { <. A , B >. } o. { <. C , D >. } ) = (/) )

Proof

Step Hyp Ref Expression
1 cosnopne.b
 |-  ( ph -> B e. W )
2 cosnopne.c
 |-  ( ph -> C e. X )
3 cosnopne.1
 |-  ( ph -> A =/= D )
4 dmsnopg
 |-  ( B e. W -> dom { <. A , B >. } = { A } )
5 1 4 syl
 |-  ( ph -> dom { <. A , B >. } = { A } )
6 rnsnopg
 |-  ( C e. X -> ran { <. C , D >. } = { D } )
7 2 6 syl
 |-  ( ph -> ran { <. C , D >. } = { D } )
8 5 7 ineq12d
 |-  ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = ( { A } i^i { D } ) )
9 disjsn2
 |-  ( A =/= D -> ( { A } i^i { D } ) = (/) )
10 3 9 syl
 |-  ( ph -> ( { A } i^i { D } ) = (/) )
11 8 10 eqtrd
 |-  ( ph -> ( dom { <. A , B >. } i^i ran { <. C , D >. } ) = (/) )
12 11 coemptyd
 |-  ( ph -> ( { <. A , B >. } o. { <. C , D >. } ) = (/) )