Metamath Proof Explorer


Theorem cosnopne

Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnopne.b φ B W
cosnopne.c φ C X
cosnopne.1 φ A D
Assertion cosnopne φ A B C D =

Proof

Step Hyp Ref Expression
1 cosnopne.b φ B W
2 cosnopne.c φ C X
3 cosnopne.1 φ A D
4 dmsnopg B W dom A B = A
5 1 4 syl φ dom A B = A
6 rnsnopg C X ran C D = D
7 2 6 syl φ ran C D = D
8 5 7 ineq12d φ dom A B ran C D = A D
9 disjsn2 A D A D =
10 3 9 syl φ A D =
11 8 10 eqtrd φ dom A B ran C D =
12 11 coemptyd φ A B C D =