Metamath Proof Explorer


Theorem cosnop

Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnop.a φ A V
cosnop.b φ B W
cosnop.c φ C X
Assertion cosnop φ A B C A = C B

Proof

Step Hyp Ref Expression
1 cosnop.a φ A V
2 cosnop.b φ B W
3 cosnop.c φ C X
4 snnzg A V A
5 xpco A A × B C × A = C × B
6 1 4 5 3syl φ A × B C × A = C × B
7 xpsng A V B W A × B = A B
8 1 2 7 syl2anc φ A × B = A B
9 xpsng C X A V C × A = C A
10 3 1 9 syl2anc φ C × A = C A
11 8 10 coeq12d φ A × B C × A = A B C A
12 xpsng C X B W C × B = C B
13 3 2 12 syl2anc φ C × B = C B
14 6 11 13 3eqtr3d φ A B C A = C B