Metamath Proof Explorer


Theorem cosnop

Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnop.a φAV
cosnop.b φBW
cosnop.c φCX
Assertion cosnop φABCA=CB

Proof

Step Hyp Ref Expression
1 cosnop.a φAV
2 cosnop.b φBW
3 cosnop.c φCX
4 snnzg AVA
5 xpco AA×BC×A=C×B
6 1 4 5 3syl φA×BC×A=C×B
7 xpsng AVBWA×B=AB
8 1 2 7 syl2anc φA×B=AB
9 xpsng CXAVC×A=CA
10 3 1 9 syl2anc φC×A=CA
11 8 10 coeq12d φA×BC×A=ABCA
12 xpsng CXBWC×B=CB
13 3 2 12 syl2anc φC×B=CB
14 6 11 13 3eqtr3d φABCA=CB