Metamath Proof Explorer


Theorem cosnop

Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnop.a ( 𝜑𝐴𝑉 )
cosnop.b ( 𝜑𝐵𝑊 )
cosnop.c ( 𝜑𝐶𝑋 )
Assertion cosnop ( 𝜑 → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∘ { ⟨ 𝐶 , 𝐴 ⟩ } ) = { ⟨ 𝐶 , 𝐵 ⟩ } )

Proof

Step Hyp Ref Expression
1 cosnop.a ( 𝜑𝐴𝑉 )
2 cosnop.b ( 𝜑𝐵𝑊 )
3 cosnop.c ( 𝜑𝐶𝑋 )
4 snnzg ( 𝐴𝑉 → { 𝐴 } ≠ ∅ )
5 xpco ( { 𝐴 } ≠ ∅ → ( ( { 𝐴 } × { 𝐵 } ) ∘ ( { 𝐶 } × { 𝐴 } ) ) = ( { 𝐶 } × { 𝐵 } ) )
6 1 4 5 3syl ( 𝜑 → ( ( { 𝐴 } × { 𝐵 } ) ∘ ( { 𝐶 } × { 𝐴 } ) ) = ( { 𝐶 } × { 𝐵 } ) )
7 xpsng ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } × { 𝐵 } ) = { ⟨ 𝐴 , 𝐵 ⟩ } )
8 1 2 7 syl2anc ( 𝜑 → ( { 𝐴 } × { 𝐵 } ) = { ⟨ 𝐴 , 𝐵 ⟩ } )
9 xpsng ( ( 𝐶𝑋𝐴𝑉 ) → ( { 𝐶 } × { 𝐴 } ) = { ⟨ 𝐶 , 𝐴 ⟩ } )
10 3 1 9 syl2anc ( 𝜑 → ( { 𝐶 } × { 𝐴 } ) = { ⟨ 𝐶 , 𝐴 ⟩ } )
11 8 10 coeq12d ( 𝜑 → ( ( { 𝐴 } × { 𝐵 } ) ∘ ( { 𝐶 } × { 𝐴 } ) ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∘ { ⟨ 𝐶 , 𝐴 ⟩ } ) )
12 xpsng ( ( 𝐶𝑋𝐵𝑊 ) → ( { 𝐶 } × { 𝐵 } ) = { ⟨ 𝐶 , 𝐵 ⟩ } )
13 3 2 12 syl2anc ( 𝜑 → ( { 𝐶 } × { 𝐵 } ) = { ⟨ 𝐶 , 𝐵 ⟩ } )
14 6 11 13 3eqtr3d ( 𝜑 → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∘ { ⟨ 𝐶 , 𝐴 ⟩ } ) = { ⟨ 𝐶 , 𝐵 ⟩ } )