Metamath Proof Explorer


Theorem cosnopne

Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cosnopne.b ( 𝜑𝐵𝑊 )
cosnopne.c ( 𝜑𝐶𝑋 )
cosnopne.1 ( 𝜑𝐴𝐷 )
Assertion cosnopne ( 𝜑 → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∘ { ⟨ 𝐶 , 𝐷 ⟩ } ) = ∅ )

Proof

Step Hyp Ref Expression
1 cosnopne.b ( 𝜑𝐵𝑊 )
2 cosnopne.c ( 𝜑𝐶𝑋 )
3 cosnopne.1 ( 𝜑𝐴𝐷 )
4 dmsnopg ( 𝐵𝑊 → dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 } )
5 1 4 syl ( 𝜑 → dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 } )
6 rnsnopg ( 𝐶𝑋 → ran { ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐷 } )
7 2 6 syl ( 𝜑 → ran { ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐷 } )
8 5 7 ineq12d ( 𝜑 → ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ ran { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { 𝐴 } ∩ { 𝐷 } ) )
9 disjsn2 ( 𝐴𝐷 → ( { 𝐴 } ∩ { 𝐷 } ) = ∅ )
10 3 9 syl ( 𝜑 → ( { 𝐴 } ∩ { 𝐷 } ) = ∅ )
11 8 10 eqtrd ( 𝜑 → ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ ran { ⟨ 𝐶 , 𝐷 ⟩ } ) = ∅ )
12 11 coemptyd ( 𝜑 → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∘ { ⟨ 𝐶 , 𝐷 ⟩ } ) = ∅ )