Metamath Proof Explorer


Theorem cphssphl

Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphssphl.x
|- X = ( W |`s U )
cphssphl.s
|- S = ( LSubSp ` W )
Assertion cphssphl
|- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil )

Proof

Step Hyp Ref Expression
1 cphssphl.x
 |-  X = ( W |`s U )
2 cphssphl.s
 |-  S = ( LSubSp ` W )
3 simp3
 |-  ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. Ban )
4 1 2 cphsscph
 |-  ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil )
5 4 3adant3
 |-  ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CPreHil )
6 ishl
 |-  ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) )
7 3 5 6 sylanbrc
 |-  ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil )