Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. A e. V ->. A e. V ). |
2 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ _V = _V ) |
3 |
1 2
|
e1a |
|- (. A e. V ->. [_ A / x ]_ _V = _V ). |
4 |
|
xpeq2 |
|- ( [_ A / x ]_ _V = _V -> ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) ) |
5 |
3 4
|
e1a |
|- (. A e. V ->. ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) ). |
6 |
|
csbxp |
|- [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) |
7 |
6
|
a1i |
|- ( A e. V -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) ) |
8 |
1 7
|
e1a |
|- (. A e. V ->. [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) ). |
9 |
|
eqeq2 |
|- ( ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) -> ( [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) <-> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) ) |
10 |
9
|
biimpd |
|- ( ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) -> ( [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) ) |
11 |
5 8 10
|
e11 |
|- (. A e. V ->. [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ). |
12 |
|
ineq2 |
|- ( [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) -> ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) |
13 |
11 12
|
e1a |
|- (. A e. V ->. ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ). |
14 |
|
csbin |
|- [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) |
15 |
14
|
a1i |
|- ( A e. V -> [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) ) |
16 |
1 15
|
e1a |
|- (. A e. V ->. [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) ). |
17 |
|
eqeq2 |
|- ( ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) <-> [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) ) |
18 |
17
|
biimpd |
|- ( ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) -> [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) ) |
19 |
13 16 18
|
e11 |
|- (. A e. V ->. [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ). |
20 |
|
df-res |
|- ( B |` C ) = ( B i^i ( C X. _V ) ) |
21 |
20
|
ax-gen |
|- A. x ( B |` C ) = ( B i^i ( C X. _V ) ) |
22 |
|
csbeq2 |
|- ( A. x ( B |` C ) = ( B i^i ( C X. _V ) ) -> [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) ) |
23 |
22
|
a1i |
|- ( A e. V -> ( A. x ( B |` C ) = ( B i^i ( C X. _V ) ) -> [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) ) ) |
24 |
1 21 23
|
e10 |
|- (. A e. V ->. [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) ). |
25 |
|
eqeq2 |
|- ( [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) <-> [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) ) |
26 |
25
|
biimpd |
|- ( [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) -> [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) ) |
27 |
19 24 26
|
e11 |
|- (. A e. V ->. [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ). |
28 |
|
df-res |
|- ( [_ A / x ]_ B |` [_ A / x ]_ C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) |
29 |
|
eqeq2 |
|- ( ( [_ A / x ]_ B |` [_ A / x ]_ C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) <-> [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) ) ) |
30 |
29
|
biimprcd |
|- ( [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> ( ( [_ A / x ]_ B |` [_ A / x ]_ C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) -> [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) ) ) |
31 |
27 28 30
|
e10 |
|- (. A e. V ->. [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) ). |
32 |
31
|
in1 |
|- ( A e. V -> [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) ) |