| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshw1 |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 2 |  | repswsymballbi |  |-  ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 3 | 2 | bicomd |  |-  ( W e. Word V -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) | 
						
							| 5 | 1 4 | mpbid |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |