| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ral0 |  |-  A. i e. (/) ( W ` i ) = ( W ` 0 ) | 
						
							| 2 |  | oveq2 |  |-  ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 0 ) ) | 
						
							| 3 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = (/) ) | 
						
							| 5 | 4 | raleqdv |  |-  ( ( # ` W ) = 0 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. (/) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 6 | 1 5 | mpbiri |  |-  ( ( # ` W ) = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 7 | 6 | a1d |  |-  ( ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 8 |  | simprl |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> W e. Word V ) | 
						
							| 9 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 10 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 11 | 10 | a1i |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 e. NN0 ) | 
						
							| 12 |  | df-ne |  |-  ( ( # ` W ) =/= 0 <-> -. ( # ` W ) = 0 ) | 
						
							| 13 |  | elnnne0 |  |-  ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) | 
						
							| 14 | 13 | simplbi2com |  |-  ( ( # ` W ) =/= 0 -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) | 
						
							| 15 | 12 14 | sylbir |  |-  ( -. ( # ` W ) = 0 -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( # ` W ) e. NN ) | 
						
							| 18 |  | neqne |  |-  ( -. ( # ` W ) = 1 -> ( # ` W ) =/= 1 ) | 
						
							| 19 | 18 | ad2antll |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( # ` W ) =/= 1 ) | 
						
							| 20 |  | nngt1ne1 |  |-  ( ( # ` W ) e. NN -> ( 1 < ( # ` W ) <-> ( # ` W ) =/= 1 ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( 1 < ( # ` W ) <-> ( # ` W ) =/= 1 ) ) | 
						
							| 22 | 19 21 | mpbird |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 < ( # ` W ) ) | 
						
							| 23 |  | elfzo0 |  |-  ( 1 e. ( 0 ..^ ( # ` W ) ) <-> ( 1 e. NN0 /\ ( # ` W ) e. NN /\ 1 < ( # ` W ) ) ) | 
						
							| 24 | 11 17 22 23 | syl3anbrc |  |-  ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( # ` W ) e. NN0 -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 26 | 9 25 | syl |  |-  ( W e. Word V -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 28 | 27 | impcom |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 29 |  | simprr |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> ( W cyclShift 1 ) = W ) | 
						
							| 30 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) | 
						
							| 31 | 30 13 | sylbbr |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 32 | 31 | ex |  |-  ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 33 | 12 32 | biimtrrid |  |-  ( ( # ` W ) e. NN0 -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 34 | 9 33 | syl |  |-  ( W e. Word V -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 36 | 35 | com12 |  |-  ( -. ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 38 | 37 | imp |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 39 |  | elfzoelz |  |-  ( 1 e. ( 0 ..^ ( # ` W ) ) -> 1 e. ZZ ) | 
						
							| 40 |  | cshweqrep |  |-  ( ( W e. Word V /\ 1 e. ZZ ) -> ( ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 41 | 39 40 | sylan2 |  |-  ( ( W e. Word V /\ 1 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ( W e. Word V /\ 1 e. ( 0 ..^ ( # ` W ) ) ) /\ ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) | 
						
							| 43 | 8 28 29 38 42 | syl22anc |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) | 
						
							| 44 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 45 |  | fzossnn0 |  |-  ( 0 e. NN0 -> ( 0 ..^ ( # ` W ) ) C_ NN0 ) | 
						
							| 46 |  | ssralv |  |-  ( ( 0 ..^ ( # ` W ) ) C_ NN0 -> ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 47 | 44 45 46 | mp2b |  |-  ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) | 
						
							| 48 |  | eqcom |  |-  ( ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) <-> ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) ) | 
						
							| 49 |  | elfzoelz |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) | 
						
							| 50 |  | zre |  |-  ( i e. ZZ -> i e. RR ) | 
						
							| 51 |  | ax-1rid |  |-  ( i e. RR -> ( i x. 1 ) = i ) | 
						
							| 52 | 50 51 | syl |  |-  ( i e. ZZ -> ( i x. 1 ) = i ) | 
						
							| 53 | 52 | oveq2d |  |-  ( i e. ZZ -> ( 0 + ( i x. 1 ) ) = ( 0 + i ) ) | 
						
							| 54 |  | zcn |  |-  ( i e. ZZ -> i e. CC ) | 
						
							| 55 | 54 | addlidd |  |-  ( i e. ZZ -> ( 0 + i ) = i ) | 
						
							| 56 | 53 55 | eqtrd |  |-  ( i e. ZZ -> ( 0 + ( i x. 1 ) ) = i ) | 
						
							| 57 | 49 56 | syl |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( 0 + ( i x. 1 ) ) = i ) | 
						
							| 58 | 57 | oveq1d |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) = ( i mod ( # ` W ) ) ) | 
						
							| 59 |  | zmodidfzoimp |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( i mod ( # ` W ) ) = i ) | 
						
							| 60 | 58 59 | eqtrd |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) = i ) | 
						
							| 61 | 60 | fveqeq2d |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) <-> ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 62 | 61 | biimpd |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) -> ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 63 | 48 62 | biimtrid |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 64 | 63 | ralimia |  |-  ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 65 | 47 64 | syl |  |-  ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 66 | 43 65 | syl |  |-  ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 67 | 66 | ex |  |-  ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 68 | 67 | impancom |  |-  ( ( -. ( # ` W ) = 0 /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> ( -. ( # ` W ) = 1 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 69 |  | eqid |  |-  ( W ` 0 ) = ( W ` 0 ) | 
						
							| 70 |  | c0ex |  |-  0 e. _V | 
						
							| 71 |  | fveqeq2 |  |-  ( i = 0 -> ( ( W ` i ) = ( W ` 0 ) <-> ( W ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 72 | 70 71 | ralsn |  |-  ( A. i e. { 0 } ( W ` i ) = ( W ` 0 ) <-> ( W ` 0 ) = ( W ` 0 ) ) | 
						
							| 73 | 69 72 | mpbir |  |-  A. i e. { 0 } ( W ` i ) = ( W ` 0 ) | 
						
							| 74 |  | oveq2 |  |-  ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 1 ) ) | 
						
							| 75 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 76 | 74 75 | eqtrdi |  |-  ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = { 0 } ) | 
						
							| 77 | 76 | raleqdv |  |-  ( ( # ` W ) = 1 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. { 0 } ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 78 | 73 77 | mpbiri |  |-  ( ( # ` W ) = 1 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 79 | 68 78 | pm2.61d2 |  |-  ( ( -. ( # ` W ) = 0 /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 80 | 79 | ex |  |-  ( -. ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 81 | 7 80 | pm2.61i |  |-  ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |