| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) | 
						
							| 2 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 3 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ∅ ) | 
						
							| 5 | 4 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ∀ 𝑖  ∈  ∅ ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 6 | 1 5 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 7 | 6 | a1d | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 8 |  | simprl | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 9 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 10 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 11 | 10 | a1i | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  1  ∈  ℕ0 ) | 
						
							| 12 |  | df-ne | ⊢ ( ( ♯ ‘ 𝑊 )  ≠  0  ↔  ¬  ( ♯ ‘ 𝑊 )  =  0 ) | 
						
							| 13 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 ) ) | 
						
							| 14 | 13 | simplbi2com | ⊢ ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 15 | 12 14 | sylbir | ⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  1  →  ( ♯ ‘ 𝑊 )  ≠  1 ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  ( ♯ ‘ 𝑊 )  ≠  1 ) | 
						
							| 20 |  | nngt1ne1 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( 1  <  ( ♯ ‘ 𝑊 )  ↔  ( ♯ ‘ 𝑊 )  ≠  1 ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  ( 1  <  ( ♯ ‘ 𝑊 )  ↔  ( ♯ ‘ 𝑊 )  ≠  1 ) ) | 
						
							| 22 | 19 21 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  1  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 23 |  | elfzo0 | ⊢ ( 1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 1  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  1  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 24 | 11 17 22 23 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 ) )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 26 | 9 25 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 28 | 27 | impcom | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 29 |  | simprr | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  ( 𝑊  cyclShift  1 )  =  𝑊 ) | 
						
							| 30 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 31 | 30 13 | sylbbr | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 32 | 31 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 12 32 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 9 33 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 39 |  | elfzoelz | ⊢ ( 1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  1  ∈  ℤ ) | 
						
							| 40 |  | cshweqrep | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  1  ∈  ℤ )  →  ( ( ( 𝑊  cyclShift  1 )  =  𝑊  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊  cyclShift  1 )  =  𝑊  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ( 𝑊  cyclShift  1 )  =  𝑊  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 43 | 8 28 29 38 42 | syl22anc | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 44 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 45 |  | fzossnn0 | ⊢ ( 0  ∈  ℕ0  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 ) | 
						
							| 46 |  | ssralv | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0  →  ( ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 47 | 44 45 46 | mp2b | ⊢ ( ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 48 |  | eqcom | ⊢ ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 49 |  | elfzoelz | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 50 |  | zre | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℝ ) | 
						
							| 51 |  | ax-1rid | ⊢ ( 𝑖  ∈  ℝ  →  ( 𝑖  ·  1 )  =  𝑖 ) | 
						
							| 52 | 50 51 | syl | ⊢ ( 𝑖  ∈  ℤ  →  ( 𝑖  ·  1 )  =  𝑖 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝑖  ∈  ℤ  →  ( 0  +  ( 𝑖  ·  1 ) )  =  ( 0  +  𝑖 ) ) | 
						
							| 54 |  | zcn | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℂ ) | 
						
							| 55 | 54 | addlidd | ⊢ ( 𝑖  ∈  ℤ  →  ( 0  +  𝑖 )  =  𝑖 ) | 
						
							| 56 | 53 55 | eqtrd | ⊢ ( 𝑖  ∈  ℤ  →  ( 0  +  ( 𝑖  ·  1 ) )  =  𝑖 ) | 
						
							| 57 | 49 56 | syl | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 0  +  ( 𝑖  ·  1 ) )  =  𝑖 ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑖  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 59 |  | zmodidfzoimp | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑖  mod  ( ♯ ‘ 𝑊 ) )  =  𝑖 ) | 
						
							| 60 | 58 59 | eqtrd | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  𝑖 ) | 
						
							| 61 | 60 | fveqeq2d | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 )  ↔  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 62 | 61 | biimpd | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 63 | 48 62 | biimtrid | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 64 | 63 | ralimia | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 65 | 47 64 | syl | ⊢ ( ∀ 𝑖  ∈  ℕ0 ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  ( 𝑖  ·  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 66 | 43 65 | syl | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ¬  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 68 | 67 | impancom | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  ( ¬  ( ♯ ‘ 𝑊 )  =  1  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 69 |  | eqid | ⊢ ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) | 
						
							| 70 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 71 |  | fveqeq2 | ⊢ ( 𝑖  =  0  →  ( ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 72 | 70 71 | ralsn | ⊢ ( ∀ 𝑖  ∈  { 0 } ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 73 | 69 72 | mpbir | ⊢ ∀ 𝑖  ∈  { 0 } ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) | 
						
							| 74 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  1  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 1 ) ) | 
						
							| 75 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 76 | 74 75 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  1  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  { 0 } ) | 
						
							| 77 | 76 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 )  =  1  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ∀ 𝑖  ∈  { 0 } ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 78 | 73 77 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 )  =  1  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 79 | 68 78 | pm2.61d2 | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  =  0  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 80 | 79 | ex | ⊢ ( ¬  ( ♯ ‘ 𝑊 )  =  0  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 81 | 7 80 | pm2.61i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) |