| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ral0 |
|
| 2 |
|
oveq2 |
|
| 3 |
|
fzo0 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
4
|
raleqdv |
|
| 6 |
1 5
|
mpbiri |
|
| 7 |
6
|
a1d |
|
| 8 |
|
simprl |
|
| 9 |
|
lencl |
|
| 10 |
|
1nn0 |
|
| 11 |
10
|
a1i |
|
| 12 |
|
df-ne |
|
| 13 |
|
elnnne0 |
|
| 14 |
13
|
simplbi2com |
|
| 15 |
12 14
|
sylbir |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
impcom |
|
| 18 |
|
neqne |
|
| 19 |
18
|
ad2antll |
|
| 20 |
|
nngt1ne1 |
|
| 21 |
17 20
|
syl |
|
| 22 |
19 21
|
mpbird |
|
| 23 |
|
elfzo0 |
|
| 24 |
11 17 22 23
|
syl3anbrc |
|
| 25 |
24
|
ex |
|
| 26 |
9 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
impcom |
|
| 29 |
|
simprr |
|
| 30 |
|
lbfzo0 |
|
| 31 |
30 13
|
sylbbr |
|
| 32 |
31
|
ex |
|
| 33 |
12 32
|
biimtrrid |
|
| 34 |
9 33
|
syl |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
com12 |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
imp |
|
| 39 |
|
elfzoelz |
|
| 40 |
|
cshweqrep |
|
| 41 |
39 40
|
sylan2 |
|
| 42 |
41
|
imp |
|
| 43 |
8 28 29 38 42
|
syl22anc |
|
| 44 |
|
0nn0 |
|
| 45 |
|
fzossnn0 |
|
| 46 |
|
ssralv |
|
| 47 |
44 45 46
|
mp2b |
|
| 48 |
|
eqcom |
|
| 49 |
|
elfzoelz |
|
| 50 |
|
zre |
|
| 51 |
|
ax-1rid |
|
| 52 |
50 51
|
syl |
|
| 53 |
52
|
oveq2d |
|
| 54 |
|
zcn |
|
| 55 |
54
|
addlidd |
|
| 56 |
53 55
|
eqtrd |
|
| 57 |
49 56
|
syl |
|
| 58 |
57
|
oveq1d |
|
| 59 |
|
zmodidfzoimp |
|
| 60 |
58 59
|
eqtrd |
|
| 61 |
60
|
fveqeq2d |
|
| 62 |
61
|
biimpd |
|
| 63 |
48 62
|
biimtrid |
|
| 64 |
63
|
ralimia |
|
| 65 |
47 64
|
syl |
|
| 66 |
43 65
|
syl |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
impancom |
|
| 69 |
|
eqid |
|
| 70 |
|
c0ex |
|
| 71 |
|
fveqeq2 |
|
| 72 |
70 71
|
ralsn |
|
| 73 |
69 72
|
mpbir |
|
| 74 |
|
oveq2 |
|
| 75 |
|
fzo01 |
|
| 76 |
74 75
|
eqtrdi |
|
| 77 |
76
|
raleqdv |
|
| 78 |
73 77
|
mpbiri |
|
| 79 |
68 78
|
pm2.61d2 |
|
| 80 |
79
|
ex |
|
| 81 |
7 80
|
pm2.61i |
|