| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ·  𝐿 )  =  ( 0  ·  𝐿 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑥  =  0  →  ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  =  ( 𝐼  +  ( 0  ·  𝐿 ) ) ) | 
						
							| 3 | 2 | fvoveq1d | ⊢ ( 𝑥  =  0  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑥  =  0  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 5 | 4 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ·  𝐿 )  =  ( 𝑦  ·  𝐿 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  =  ( 𝐼  +  ( 𝑦  ·  𝐿 ) ) ) | 
						
							| 8 | 7 | fvoveq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ·  𝐿 )  =  ( ( 𝑦  +  1 )  ·  𝐿 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  =  ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) ) ) | 
						
							| 13 | 12 | fvoveq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑗  →  ( 𝑥  ·  𝐿 )  =  ( 𝑗  ·  𝐿 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑥  =  𝑗  →  ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  =  ( 𝐼  +  ( 𝑗  ·  𝐿 ) ) ) | 
						
							| 18 | 17 | fvoveq1d | ⊢ ( 𝑥  =  𝑗  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑥  =  𝑗  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑥  =  𝑗  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑥  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 21 |  | zcn | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ℂ ) | 
						
							| 22 | 21 | mul02d | ⊢ ( 𝐿  ∈  ℤ  →  ( 0  ·  𝐿 )  =  0 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( 0  ·  𝐿 )  =  0 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 0  ·  𝐿 )  =  0 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝐼  +  ( 0  ·  𝐿 ) )  =  ( 𝐼  +  0 ) ) | 
						
							| 26 |  | elfzoelz | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 27 | 26 | zcnd | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ℂ ) | 
						
							| 28 | 27 | addridd | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  +  0 )  =  𝐼 ) | 
						
							| 29 | 28 | ad2antll | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝐼  +  0 )  =  𝐼 ) | 
						
							| 30 | 25 29 | eqtrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝐼  +  ( 0  ·  𝐿 ) )  =  𝐼 ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝐼  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 32 |  | zmodidfzoimp | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  mod  ( ♯ ‘ 𝑊 ) )  =  𝐼 ) | 
						
							| 33 | 32 | ad2antll | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝐼  mod  ( ♯ ‘ 𝑊 ) )  =  𝐼 ) | 
						
							| 34 | 31 33 | eqtr2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  𝐼  =  ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 0  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 36 |  | fveq1 | ⊢ ( 𝑊  =  ( 𝑊  cyclShift  𝐿 )  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 37 | 36 | eqcoms | ⊢ ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 38 | 37 | ad2antrl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 40 |  | simprll | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 41 |  | simprlr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  𝐿  ∈  ℤ ) | 
						
							| 42 |  | elfzo0 | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 43 |  | nn0z | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℤ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  𝐼  ∈  ℤ ) | 
						
							| 45 |  | nn0z | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℤ ) | 
						
							| 46 |  | zmulcl | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝑦  ·  𝐿 )  ∈  ℤ ) | 
						
							| 47 | 45 46 | sylan | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐿  ∈  ℤ )  →  ( 𝑦  ·  𝐿 )  ∈  ℤ ) | 
						
							| 48 | 47 | ancoms | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑦  ·  𝐿 )  ∈  ℤ ) | 
						
							| 49 |  | zaddcl | ⊢ ( ( 𝐼  ∈  ℤ  ∧  ( 𝑦  ·  𝐿 )  ∈  ℤ )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ ) | 
						
							| 50 | 44 48 49 | syl2an | ⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 ) )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ ) | 
						
							| 51 |  | simplr | ⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 52 | 50 51 | jca | ⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 ) )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 54 | 53 | 3adant3 | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 55 | 42 54 | sylbi | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 57 | 56 | expd | ⊢ ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐿  ∈  ℤ  →  ( 𝑦  ∈  ℕ0  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( 𝐿  ∈  ℤ  →  ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑦  ∈  ℕ0  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑦  ∈  ℕ0  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) ) | 
						
							| 60 | 59 | imp | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑦  ∈  ℕ0  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 62 |  | zmodfzo | ⊢ ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 64 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ  ∧  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 65 | 40 41 63 64 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( 𝑊  cyclShift  𝐿 ) ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 66 |  | nn0re | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℝ ) | 
						
							| 67 |  | zre | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ℝ ) | 
						
							| 68 |  | nn0re | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℝ ) | 
						
							| 69 |  | nnrp | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 70 |  | remulcl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( 𝑦  ·  𝐿 )  ∈  ℝ ) | 
						
							| 71 | 70 | ancoms | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ·  𝐿 )  ∈  ℝ ) | 
						
							| 72 |  | readdcl | ⊢ ( ( 𝐼  ∈  ℝ  ∧  ( 𝑦  ·  𝐿 )  ∈  ℝ )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℝ ) | 
						
							| 73 | 71 72 | sylan2 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℝ ) | 
						
							| 74 | 73 | ancoms | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℝ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℝ ) | 
						
							| 76 |  | simprll | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  𝐿  ∈  ℝ ) | 
						
							| 77 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 78 |  | modaddmod | ⊢ ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  ∈  ℝ  ∧  𝐿  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ+ )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 79 | 75 76 77 78 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 80 |  | recn | ⊢ ( 𝐼  ∈  ℝ  →  𝐼  ∈  ℂ ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  𝐼  ∈  ℂ ) | 
						
							| 82 | 70 | recnd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( 𝑦  ·  𝐿 )  ∈  ℂ ) | 
						
							| 83 | 82 | ancoms | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  ·  𝐿 )  ∈  ℂ ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( 𝑦  ·  𝐿 )  ∈  ℂ ) | 
						
							| 85 |  | recn | ⊢ ( 𝐿  ∈  ℝ  →  𝐿  ∈  ℂ ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝐿  ∈  ℂ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  𝐿  ∈  ℂ ) | 
						
							| 88 | 81 84 87 | addassd | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  =  ( 𝐼  +  ( ( 𝑦  ·  𝐿 )  +  𝐿 ) ) ) | 
						
							| 89 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 91 |  | 1cnd | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℂ ) | 
						
							| 92 | 90 91 86 | adddird | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑦  +  1 )  ·  𝐿 )  =  ( ( 𝑦  ·  𝐿 )  +  ( 1  ·  𝐿 ) ) ) | 
						
							| 93 | 85 | mullidd | ⊢ ( 𝐿  ∈  ℝ  →  ( 1  ·  𝐿 )  =  𝐿 ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 1  ·  𝐿 )  =  𝐿 ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑦  ·  𝐿 )  +  ( 1  ·  𝐿 ) )  =  ( ( 𝑦  ·  𝐿 )  +  𝐿 ) ) | 
						
							| 96 | 92 95 | eqtr2d | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑦  ·  𝐿 )  +  𝐿 )  =  ( ( 𝑦  +  1 )  ·  𝐿 ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( ( 𝑦  ·  𝐿 )  +  𝐿 )  =  ( ( 𝑦  +  1 )  ·  𝐿 ) ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( 𝐼  +  ( ( 𝑦  ·  𝐿 )  +  𝐿 ) )  =  ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) ) ) | 
						
							| 99 | 88 98 | eqtrd | ⊢ ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  =  ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) ) ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  =  ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 102 | 79 101 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  ∧  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ ) )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 103 | 102 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℝ+  →  ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 104 | 69 103 | syl | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  𝐼  ∈  ℝ )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 105 | 104 | expd | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐼  ∈  ℝ  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 106 | 105 | com12 | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( 𝐼  ∈  ℝ  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 107 | 67 68 106 | syl2an | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( 𝐼  ∈  ℝ  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 108 | 107 | com13 | ⊢ ( 𝐼  ∈  ℝ  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 109 | 66 108 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 110 | 109 | imp | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 111 | 110 | 3adant3 | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 112 | 42 111 | sylbi | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐿  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 113 | 112 | expd | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  ∈  ℤ  →  ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 114 | 113 | adantld | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 116 | 115 | impcom | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 117 | 116 | impcom | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝑊 ‘ ( ( ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  +  𝐿 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 119 | 39 65 118 | 3eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 120 | 119 | eqeq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 121 | 120 | biimpd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 122 | 121 | ex | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 123 | 122 | a2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑦  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) )  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( ( 𝑦  +  1 )  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 124 | 5 10 15 20 35 123 | nn0ind | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 125 | 124 | com12 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑗  ∈  ℕ0  →  ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 126 | 125 | ralrimiv | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  ∧  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ∀ 𝑗  ∈  ℕ0 ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 127 | 126 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑗  ∈  ℕ0 ( 𝑊 ‘ 𝐼 )  =  ( 𝑊 ‘ ( ( 𝐼  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) |