| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = 0 -> ( x x. L ) = ( 0 x. L ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( x = 0 -> ( I + ( x x. L ) ) = ( I + ( 0 x. L ) ) ) | 
						
							| 3 | 2 | fvoveq1d |  |-  ( x = 0 -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( x = 0 -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 5 | 4 | imbi2d |  |-  ( x = 0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 6 |  | oveq1 |  |-  ( x = y -> ( x x. L ) = ( y x. L ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = y -> ( I + ( x x. L ) ) = ( I + ( y x. L ) ) ) | 
						
							| 8 | 7 | fvoveq1d |  |-  ( x = y -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( x = y -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( x = y -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = ( y + 1 ) -> ( x x. L ) = ( ( y + 1 ) x. L ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( x = ( y + 1 ) -> ( I + ( x x. L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) | 
						
							| 13 | 12 | fvoveq1d |  |-  ( x = ( y + 1 ) -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( x = ( y + 1 ) -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( x = ( y + 1 ) -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 16 |  | oveq1 |  |-  ( x = j -> ( x x. L ) = ( j x. L ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( x = j -> ( I + ( x x. L ) ) = ( I + ( j x. L ) ) ) | 
						
							| 18 | 17 | fvoveq1d |  |-  ( x = j -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( x = j -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( x = j -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 21 |  | zcn |  |-  ( L e. ZZ -> L e. CC ) | 
						
							| 22 | 21 | mul02d |  |-  ( L e. ZZ -> ( 0 x. L ) = 0 ) | 
						
							| 23 | 22 | adantl |  |-  ( ( W e. Word V /\ L e. ZZ ) -> ( 0 x. L ) = 0 ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( 0 x. L ) = 0 ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = ( I + 0 ) ) | 
						
							| 26 |  | elfzoelz |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) | 
						
							| 27 | 26 | zcnd |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. CC ) | 
						
							| 28 | 27 | addridd |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 0 ) = I ) | 
						
							| 29 | 28 | ad2antll |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + 0 ) = I ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = I ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) = ( I mod ( # ` W ) ) ) | 
						
							| 32 |  | zmodidfzoimp |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( I mod ( # ` W ) ) = I ) | 
						
							| 33 | 32 | ad2antll |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I mod ( # ` W ) ) = I ) | 
						
							| 34 | 31 33 | eqtr2d |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> I = ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 36 |  | fveq1 |  |-  ( W = ( W cyclShift L ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 37 | 36 | eqcoms |  |-  ( ( W cyclShift L ) = W -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 38 | 37 | ad2antrl |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 40 |  | simprll |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> W e. Word V ) | 
						
							| 41 |  | simprlr |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> L e. ZZ ) | 
						
							| 42 |  | elfzo0 |  |-  ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) | 
						
							| 43 |  | nn0z |  |-  ( I e. NN0 -> I e. ZZ ) | 
						
							| 44 | 43 | adantr |  |-  ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> I e. ZZ ) | 
						
							| 45 |  | nn0z |  |-  ( y e. NN0 -> y e. ZZ ) | 
						
							| 46 |  | zmulcl |  |-  ( ( y e. ZZ /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) | 
						
							| 47 | 45 46 | sylan |  |-  ( ( y e. NN0 /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) | 
						
							| 48 | 47 | ancoms |  |-  ( ( L e. ZZ /\ y e. NN0 ) -> ( y x. L ) e. ZZ ) | 
						
							| 49 |  | zaddcl |  |-  ( ( I e. ZZ /\ ( y x. L ) e. ZZ ) -> ( I + ( y x. L ) ) e. ZZ ) | 
						
							| 50 | 44 48 49 | syl2an |  |-  ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( I + ( y x. L ) ) e. ZZ ) | 
						
							| 51 |  | simplr |  |-  ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( # ` W ) e. NN ) | 
						
							| 52 | 50 51 | jca |  |-  ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) | 
						
							| 54 | 53 | 3adant3 |  |-  ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) | 
						
							| 55 | 42 54 | sylbi |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) | 
						
							| 57 | 56 | expd |  |-  ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) | 
						
							| 58 | 57 | com12 |  |-  ( L e. ZZ -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) | 
						
							| 60 | 59 | imp |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) | 
						
							| 61 | 60 | impcom |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) | 
						
							| 62 |  | zmodfzo |  |-  ( ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 64 |  | cshwidxmod |  |-  ( ( W e. Word V /\ L e. ZZ /\ ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) | 
						
							| 65 | 40 41 63 64 | syl3anc |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) | 
						
							| 66 |  | nn0re |  |-  ( I e. NN0 -> I e. RR ) | 
						
							| 67 |  | zre |  |-  ( L e. ZZ -> L e. RR ) | 
						
							| 68 |  | nn0re |  |-  ( y e. NN0 -> y e. RR ) | 
						
							| 69 |  | nnrp |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) | 
						
							| 70 |  | remulcl |  |-  ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. RR ) | 
						
							| 71 | 70 | ancoms |  |-  ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. RR ) | 
						
							| 72 |  | readdcl |  |-  ( ( I e. RR /\ ( y x. L ) e. RR ) -> ( I + ( y x. L ) ) e. RR ) | 
						
							| 73 | 71 72 | sylan2 |  |-  ( ( I e. RR /\ ( L e. RR /\ y e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) | 
						
							| 74 | 73 | ancoms |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( y x. L ) ) e. RR ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) | 
						
							| 76 |  | simprll |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> L e. RR ) | 
						
							| 77 |  | simpl |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( # ` W ) e. RR+ ) | 
						
							| 78 |  | modaddmod |  |-  ( ( ( I + ( y x. L ) ) e. RR /\ L e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) | 
						
							| 79 | 75 76 77 78 | syl3anc |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) | 
						
							| 80 |  | recn |  |-  ( I e. RR -> I e. CC ) | 
						
							| 81 | 80 | adantl |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> I e. CC ) | 
						
							| 82 | 70 | recnd |  |-  ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. CC ) | 
						
							| 83 | 82 | ancoms |  |-  ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. CC ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( y x. L ) e. CC ) | 
						
							| 85 |  | recn |  |-  ( L e. RR -> L e. CC ) | 
						
							| 86 | 85 | adantr |  |-  ( ( L e. RR /\ y e. RR ) -> L e. CC ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> L e. CC ) | 
						
							| 88 | 81 84 87 | addassd |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y x. L ) + L ) ) ) | 
						
							| 89 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 90 | 89 | adantl |  |-  ( ( L e. RR /\ y e. RR ) -> y e. CC ) | 
						
							| 91 |  | 1cnd |  |-  ( ( L e. RR /\ y e. RR ) -> 1 e. CC ) | 
						
							| 92 | 90 91 86 | adddird |  |-  ( ( L e. RR /\ y e. RR ) -> ( ( y + 1 ) x. L ) = ( ( y x. L ) + ( 1 x. L ) ) ) | 
						
							| 93 | 85 | mullidd |  |-  ( L e. RR -> ( 1 x. L ) = L ) | 
						
							| 94 | 93 | adantr |  |-  ( ( L e. RR /\ y e. RR ) -> ( 1 x. L ) = L ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + ( 1 x. L ) ) = ( ( y x. L ) + L ) ) | 
						
							| 96 | 92 95 | eqtr2d |  |-  ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( ( y x. L ) + L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) | 
						
							| 99 | 88 98 | eqtrd |  |-  ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) | 
						
							| 100 | 99 | adantl |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) | 
						
							| 102 | 79 101 | eqtrd |  |-  ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) | 
						
							| 103 | 102 | ex |  |-  ( ( # ` W ) e. RR+ -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 104 | 69 103 | syl |  |-  ( ( # ` W ) e. NN -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 105 | 104 | expd |  |-  ( ( # ` W ) e. NN -> ( ( L e. RR /\ y e. RR ) -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 106 | 105 | com12 |  |-  ( ( L e. RR /\ y e. RR ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 107 | 67 68 106 | syl2an |  |-  ( ( L e. ZZ /\ y e. NN0 ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 108 | 107 | com13 |  |-  ( I e. RR -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 109 | 66 108 | syl |  |-  ( I e. NN0 -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 110 | 109 | imp |  |-  ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 111 | 110 | 3adant3 |  |-  ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 112 | 42 111 | sylbi |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 113 | 112 | expd |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 114 | 113 | adantld |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 115 | 114 | adantl |  |-  ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 116 | 115 | impcom |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 117 | 116 | impcom |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) | 
						
							| 118 | 117 | fveq2d |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 119 | 39 65 118 | 3eqtrd |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 120 | 119 | eqeq2d |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 121 | 120 | biimpd |  |-  ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 122 | 121 | ex |  |-  ( y e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 123 | 122 | a2d |  |-  ( y e. NN0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) | 
						
							| 124 | 5 10 15 20 35 123 | nn0ind |  |-  ( j e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 125 | 124 | com12 |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( j e. NN0 -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 126 | 125 | ralrimiv |  |-  ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 127 | 126 | ex |  |-  ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |