| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshw1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 2 |  | repswsymballbi | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 3 | 2 | bicomd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 5 | 1 4 | mpbid | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  1 )  =  𝑊 )  →  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) |