| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcom | ⊢ ( ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 2 | 1 | rexbii | ⊢ ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 3 | 2 | abbii | ⊢ { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) } | 
						
							| 4 |  | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V | 
						
							| 5 | 4 | abrexex | ⊢ { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) }  ∈  V | 
						
							| 6 | 3 5 | eqeltri | ⊢ { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  ∈  V | 
						
							| 7 |  | rabssab | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  ⊆  { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 } | 
						
							| 8 | 6 7 | ssexi | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  ∈  V |