| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑉  ∧  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) } | 
						
							| 2 |  | r19.42v | ⊢ ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) | 
						
							| 3 | 2 | bicomi | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) | 
						
							| 4 | 3 | abbii | ⊢ { 𝑤  ∣  ( 𝑤  ∈  Word  𝑉  ∧  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) }  =  { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) } | 
						
							| 5 |  | df-rex | ⊢ ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  ↔  ∃ 𝑛 ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) ) | 
						
							| 6 | 5 | abbii | ⊢ { 𝑤  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) }  =  { 𝑤  ∣  ∃ 𝑛 ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) } | 
						
							| 7 | 1 4 6 | 3eqtri | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑤  ∣  ∃ 𝑛 ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) } | 
						
							| 8 |  | abid2 | ⊢ { 𝑛  ∣  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) }  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) | 
						
							| 9 | 8 | ovexi | ⊢ { 𝑛  ∣  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) }  ∈  V | 
						
							| 10 |  | tru | ⊢ ⊤ | 
						
							| 11 | 10 10 | pm3.2i | ⊢ ( ⊤  ∧  ⊤ ) | 
						
							| 12 |  | ovexd | ⊢ ( ⊤  →  ( 𝑊  cyclShift  𝑛 )  ∈  V ) | 
						
							| 13 |  | eqtr3 | ⊢ ( ( 𝑤  =  ( 𝑊  cyclShift  𝑛 )  ∧  𝑦  =  ( 𝑊  cyclShift  𝑛 ) )  →  𝑤  =  𝑦 ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑤  =  ( 𝑊  cyclShift  𝑛 )  →  ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  →  𝑤  =  𝑦 ) ) | 
						
							| 15 | 14 | eqcoms | ⊢ ( ( 𝑊  cyclShift  𝑛 )  =  𝑤  →  ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  →  𝑤  =  𝑦 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  →  𝑤  =  𝑦 ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( ⊤  ∧  𝑦  =  ( 𝑊  cyclShift  𝑛 ) )  ∧  ⊤ )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) | 
						
							| 19 | 18 | alrimiv | ⊢ ( ( ( ⊤  ∧  𝑦  =  ( 𝑊  cyclShift  𝑛 ) )  ∧  ⊤ )  →  ∀ 𝑤 ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( ⊤  ∧  𝑦  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( ⊤  →  ∀ 𝑤 ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) ) | 
						
							| 21 | 12 20 | spcimedv | ⊢ ( ⊤  →  ( ⊤  →  ∃ 𝑦 ∀ 𝑤 ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ⊤  ∧  ⊤ )  →  ∃ 𝑦 ∀ 𝑤 ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) | 
						
							| 23 | 11 22 | mp1i | ⊢ ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ∃ 𝑦 ∀ 𝑤 ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 )  →  𝑤  =  𝑦 ) ) | 
						
							| 24 | 9 23 | zfrep4 | ⊢ { 𝑤  ∣  ∃ 𝑛 ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) }  ∈  V | 
						
							| 25 | 7 24 | eqeltri | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  ∈  V |