| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } | 
						
							| 2 |  | r19.42v |  |-  ( E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) <-> ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) ) | 
						
							| 3 | 2 | bicomi |  |-  ( ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) <-> E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) ) | 
						
							| 4 | 3 | abbii |  |-  { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } = { w | E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) } | 
						
							| 5 |  | df-rex |  |-  ( E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) <-> E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) ) | 
						
							| 6 | 5 | abbii |  |-  { w | E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) } = { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } | 
						
							| 7 | 1 4 6 | 3eqtri |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } | 
						
							| 8 |  | abid2 |  |-  { n | n e. ( 0 ..^ ( # ` W ) ) } = ( 0 ..^ ( # ` W ) ) | 
						
							| 9 | 8 | ovexi |  |-  { n | n e. ( 0 ..^ ( # ` W ) ) } e. _V | 
						
							| 10 |  | tru |  |-  T. | 
						
							| 11 | 10 10 | pm3.2i |  |-  ( T. /\ T. ) | 
						
							| 12 |  | ovexd |  |-  ( T. -> ( W cyclShift n ) e. _V ) | 
						
							| 13 |  | eqtr3 |  |-  ( ( w = ( W cyclShift n ) /\ y = ( W cyclShift n ) ) -> w = y ) | 
						
							| 14 | 13 | ex |  |-  ( w = ( W cyclShift n ) -> ( y = ( W cyclShift n ) -> w = y ) ) | 
						
							| 15 | 14 | eqcoms |  |-  ( ( W cyclShift n ) = w -> ( y = ( W cyclShift n ) -> w = y ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> ( y = ( W cyclShift n ) -> w = y ) ) | 
						
							| 17 | 16 | com12 |  |-  ( y = ( W cyclShift n ) -> ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( T. /\ y = ( W cyclShift n ) ) /\ T. ) -> ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) | 
						
							| 19 | 18 | alrimiv |  |-  ( ( ( T. /\ y = ( W cyclShift n ) ) /\ T. ) -> A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) | 
						
							| 20 | 19 | ex |  |-  ( ( T. /\ y = ( W cyclShift n ) ) -> ( T. -> A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) ) | 
						
							| 21 | 12 20 | spcimedv |  |-  ( T. -> ( T. -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( T. /\ T. ) -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) | 
						
							| 23 | 11 22 | mp1i |  |-  ( n e. ( 0 ..^ ( # ` W ) ) -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) | 
						
							| 24 | 9 23 | zfrep4 |  |-  { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } e. _V | 
						
							| 25 | 7 24 | eqeltri |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |