| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } |
| 2 |
|
r19.42v |
|- ( E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) <-> ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) ) |
| 3 |
2
|
bicomi |
|- ( ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) <-> E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) ) |
| 4 |
3
|
abbii |
|- { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } = { w | E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) } |
| 5 |
|
df-rex |
|- ( E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) <-> E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) ) |
| 6 |
5
|
abbii |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( w e. Word V /\ ( W cyclShift n ) = w ) } = { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } |
| 7 |
1 4 6
|
3eqtri |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } |
| 8 |
|
abid2 |
|- { n | n e. ( 0 ..^ ( # ` W ) ) } = ( 0 ..^ ( # ` W ) ) |
| 9 |
8
|
ovexi |
|- { n | n e. ( 0 ..^ ( # ` W ) ) } e. _V |
| 10 |
|
tru |
|- T. |
| 11 |
10 10
|
pm3.2i |
|- ( T. /\ T. ) |
| 12 |
|
ovexd |
|- ( T. -> ( W cyclShift n ) e. _V ) |
| 13 |
|
eqtr3 |
|- ( ( w = ( W cyclShift n ) /\ y = ( W cyclShift n ) ) -> w = y ) |
| 14 |
13
|
ex |
|- ( w = ( W cyclShift n ) -> ( y = ( W cyclShift n ) -> w = y ) ) |
| 15 |
14
|
eqcoms |
|- ( ( W cyclShift n ) = w -> ( y = ( W cyclShift n ) -> w = y ) ) |
| 16 |
15
|
adantl |
|- ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> ( y = ( W cyclShift n ) -> w = y ) ) |
| 17 |
16
|
com12 |
|- ( y = ( W cyclShift n ) -> ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) |
| 18 |
17
|
ad2antlr |
|- ( ( ( T. /\ y = ( W cyclShift n ) ) /\ T. ) -> ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) |
| 19 |
18
|
alrimiv |
|- ( ( ( T. /\ y = ( W cyclShift n ) ) /\ T. ) -> A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) |
| 20 |
19
|
ex |
|- ( ( T. /\ y = ( W cyclShift n ) ) -> ( T. -> A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) ) |
| 21 |
12 20
|
spcimedv |
|- ( T. -> ( T. -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) ) |
| 22 |
21
|
imp |
|- ( ( T. /\ T. ) -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) |
| 23 |
11 22
|
mp1i |
|- ( n e. ( 0 ..^ ( # ` W ) ) -> E. y A. w ( ( w e. Word V /\ ( W cyclShift n ) = w ) -> w = y ) ) |
| 24 |
9 23
|
zfrep4 |
|- { w | E. n ( n e. ( 0 ..^ ( # ` W ) ) /\ ( w e. Word V /\ ( W cyclShift n ) = w ) ) } e. _V |
| 25 |
7 24
|
eqeltri |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |