Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
|- ( ( W cyclShift n ) = w <-> w = ( W cyclShift n ) ) |
2 |
1
|
rexbii |
|- ( E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w <-> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) |
3 |
2
|
abbii |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } |
4 |
|
ovex |
|- ( 0 ..^ ( # ` W ) ) e. _V |
5 |
4
|
abrexex |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } e. _V |
6 |
3 5
|
eqeltri |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |
7 |
|
rabssab |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } C_ { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } |
8 |
6 7
|
ssexi |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |