| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcom |  |-  ( ( W cyclShift n ) = w <-> w = ( W cyclShift n ) ) | 
						
							| 2 | 1 | rexbii |  |-  ( E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w <-> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) | 
						
							| 3 | 2 | abbii |  |-  { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } | 
						
							| 4 |  | ovex |  |-  ( 0 ..^ ( # ` W ) ) e. _V | 
						
							| 5 | 4 | abrexex |  |-  { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } e. _V | 
						
							| 6 | 3 5 | eqeltri |  |-  { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V | 
						
							| 7 |  | rabssab |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } C_ { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } | 
						
							| 8 | 6 7 | ssexi |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |